Data Loggers and Data Acquisition Systems For All Applications - Temperature data loggers, Voltage and Current data loggers, Humidity data loggers, Power and energy data loggers and more
Data Loggers for All Applications

   1 -800 - 956 - 4437

Temperature Monitoring In Medical Refrigerators and Freezers

Application Note: Temperature Monitoring In Medical Refrigerators and Freezers

Product Range: Wireless Equipment List (Per 1 to 3 Freezers):

· A1-13 Sensor Pod

· E1-19 Temperature Probes (1 to 3)

· E1-34 Temperature Dampener

Per wireless system:

· B1-06 Gateway

LAN-Wired Equipment List (Per 1 to 2 Freezers)

· A2-05 LAN-Wired Sensor Pod

· E1-19 Temperature Probes (1 to 2)

· E1-34 Temperature Dampener

Application: Monitoring Medical Refrigerators and Freezers

Continuous Temperature Monitoring of Medical Refrigerators and Freezers.


Cold storage is a common application in medical facilities across the board: hospitals, clinics, pharmacies and doctor’s offices. Grant/Accsense systems are ideal for monitoring and recording of these temperatures. These refrigerators range from high-quality medical units to common household-grade units.

The Problem:

The medical facilities require the monitoring of their refrigerators and freezers. If there were to be a temperature raise for a long period of time in the refrigerators or freezers this could cause the drugs or samples being stored to become unusable, and cost time and money to replace.

The Solution:

The following represent some of the issues experienced in monitoring refrigerators and freezers and solutions to these challenges.

Labcold Reefer

The above is a typical Medical-Grade refrigerator with a digital display.

Why does the temperature of my unit vary over time?

Data Logger Graph of Temperature and Power Consumption

Graph showing refrigerator cavity temperature and refrigerator power consumption.

The temperature of the refrigerator or freezer cavity varies with time, and also depends on when the motor/compressor is running. Most often, refrigerator/freezer manufacturers slow down or “damp” the response of their digital indicators to mask this variation, but it is real in all refrigerators and freezers, even medical grade units.

Should I use a probe temperature dampener?

The first issue is: “Do I use a probe temperature dampener or not?” A temperature probe dampener allows the monitoring system to measure the temperature of the refrigerator contents rather than measure the temperature of the air.

Data Logger Temperature Probe with Buffer

The above shows the temperature inserted into a dampener.

As shown below, the thermal dampener “smooths” out the temperature readings over time:

Data Logger Temperature Chart Showing Dampening Effect of Thermal Buffer

The above shows a refrigerator with two probes located side-by-side. The probe designated with the green line has a probe dampener installed, the probe designated by the blue line has no dampener installed.

The response will be slower with a dampener, and fewer false alarms due to defrosting cycles and/or door openings will occur. The alarm limits can be set for a narrower range if required as well.

In the example below, note the difference in response to a door opening:

Data Logger Temperature Chart Showing Temperature Shift due to Door Opening

The above shows the response of two probes to a door opening. The probe with the blue line has no dampener fitted. The probe with the green line has a dampener fitted.

While the un-dampened probe reflects the immediate rise in temperature of the air in the refrigerator cavity, the probe with the dampener reads more similarly to the contents stored in the refrigerator.

Where Should I Locate The Probe?:

The next issue is probe location, or “Where do I put the probe”? First, the temperature inside the freezer is not uniform. The cold air enters the freezer from one location only, and is measured by the thermostat at one location only, so a temperature gradient is sure to exist. There is no ONE temperature inside the freezer.

Therefore, the answer is: “Somewhere secure, preferably towards the hinge side of the refrigerator”. Since there will be a temperature gradient inside the refrigerator, there is no one “right” location. The most important aspect is that the probe does not move inside the refrigerator, so it gives a consistent reading.

The above graph shows two probes in the same refrigerators cavity. The probe with the blue line is closer to the cold air entry, so it has a lower average temperature and cycles over a wider range.

Again, the most important factor is that the probe does not move once installed.

In Ultra-Low Freezer applications, an RTD temperature probe can be inserted into the cavity of the freezer through an access port at the back of the freezer, or through the door seal. If running the probe through the door seal, ideally, a hole is drilled in the door seal and plugged with Silicone Sealant, however, the door seal may be simply closed on the probe wire. In either case, the hinge side of the door is preferred for the greater leverage on the seal and the relatively lack of potential disturbance on the hinge side. Note that closing the door seal on the probe wire may allow a small air gap which may increase frost build-up inside the freezer.

How often should I record data?

Most organizations have specific recording periods which will dictate the recording intervals. Note that the Grant/Accsense system will synchronize these intervals to the clock, i.e. if data is recorded every 4 hours, it will occur exactly at midnight, 4am, 8 am, noon, etc. If there is no over-riding requirement, then recording every 2 hours is suggested.

How often should I check for an alarm?

The Grant/Accsense systems can check for alarms at different intervals than those used to record data.

A typical setting for a medical refrigerator would be 10 minutes, with the trigger filter set to require 3 data points in a row to be out of limits before the alarm is triggered.

Why doesn’t the Grant/Accsense Monitoring temperature match my digital display exactly?

The temperature indicated by the digital display on the freezer may not match that of the Grant/Accsense system monitoring the temperature for two reasons. First, manufacturers of the freezers tend to use very slow-response temperature probes so that door openings do not set off any alarms. Second, the probes used by the manufacturer are often not even located inside the freezer cavity – they can be behind the back wall of the freezer (away from potential damage) and a “correction factor” applied electronically.

Due to the above, when calibrations are performed, the Grant/Accsense probe and the manufacturer probe must be placed very close together and the temperature allowed to stabilize over sufficient time.

If desired, the calibration parameters of the Grant/Accsense unit can be adjusted up or down, but this should only be done by a qualified calibration person.

The Benefits:

The alarms generated by the system for each freezer can be sent to customized phone or email lists, as it is common in many facilities for the “owner” of each freezer to be different.

The economic benefits of automated monitoring can also be taken into consideration. Compared to manual recording of the temperature that is required by regulatory agencies, automated monitoring is far cheaper. Consider the calculation below for a manual measurement:

· 1 minute per measurement multiplied by 6 measurements per day multiplied by 30 days per month multiplied by $20.00 per hour equals $60 per month! For a single freezer!

And that assumes that the facility is staffed 24 hours a day. If personnel must be brought in to monitor and record the temperature, the cost savings are even greater.

For wireless installations, extended-life battery packs are often a good idea, since 110v wiring is often limited in freezer rooms.