
ADbasic
Real-Time Development Tool for

ADwin Systems

ADbasic Version 5.00

March 2010

License Key: .

ADwin – the fastest real-time systems under Windows

II ADbasic 5.00, Manual March 2010

ADwin

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320
Fax: +49 6251 5 68 19
E-Mail: info@ADwin.de
Internet www.ADwin.de

Jäger Computergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

Table of contents

ADbasic 5.00, Manual March 2010 III

ADwin
Table of contents

 Table of contents. III

 Conventions . 2

1 Introduction . 3

2 News in ADbasic 5 . 5

3 Development Environment . 9
3.1 Basic Steps. 9
3.1.1 Starting the Development Environment 9
3.1.2 Check or change ADbasic licenses 9
3.1.3 Loading the ADwin Operating System 11
3.1.4 Basic Elements of the Development Environment 12

3.2 Creating source code . 15
3.2.1 Calling online help . 15
3.2.2 Context menu in source code window 16
3.2.3 Editor bar . 17

3.3 Formatting source code . 17
3.3.1 Syntax highlighting . 18
3.3.2 Smart formatting . 18
3.3.3 Indenting text lines . 18
3.3.4 Changing lines into comment . 19
3.3.5 Folding text ranges . 19

3.4 Searching and replacing . 20
3.4.1 Finding text quickly . 21
3.4.2 Finding and replacing text . 21

Examples - Finding Text . 24
Examples - Replacing Text . 25

3.4.3 Regular expression . 26
3.4.4 Marking control blocks . 28
3.4.5 Using bookmarks . 28
3.4.6 Jump to a program line . 29
3.4.7 Jumping to declaration of instruction or variable 29

3.5 Writing programs with ease . 29
3.5.1 Autocomplete for instruction or variable 30
3.5.2 Inserting code snippets . 31
3.5.3 Displaying instruction parameters 32

Table of contents

IV ADbasic 5.00, Manual March 2010

ADwin
3.5.4 Displaying declaration of instruction or variable 32
3.5.5 Displaying declarations of a file 32
3.5.6 Displaying used global variables and arrays 34

3.6 Managing Projects . 35
3.7 Menus . 36
3.7.1 File Menu . 37
3.7.2 Edit Menu . 38
3.7.3 View Menu . 38
3.7.4 Build Menu . 39
3.7.5 Options Menu . 40

Compiler Options dialog box. 40
Process Options dialog box . 42
Settings dialog box . 45

3.7.6 Debug Menu . 48
Timing Analyzer Option. 48
Show timing information Menu Item 48
Debug mode Option . 52

3.7.7 Tools Menu . 54
3.7.8 Window Menu . 55
3.7.9 Help Menu . 55

3.8 Windows . 57
3.8.1 Toolbox . 57
3.8.2 Project Window . 57
3.8.3 Parameter Window . 58
3.8.4 Process Window . 60
3.8.5 Status Bar . 61

3.9 Info range. 62
3.9.1 Info window . 62
3.9.2 ToDo List . 63
3.9.3 Timing Analyzer Window . 64
3.9.4 Global Variables Window . 67
3.9.5 Declarations Window . 69

3.10 ADtools . 70

4 Programming Processes . 72
4.1 Program Design . 72
4.1.1 The Program Sections . 74
4.1.2 User defined instructions and variables 74

4.2 Variables and Arrays . 76
4.2.1 Overview . 76

Table of contents

ADbasic 5.00, Manual March 2010 V

ADwin
4.2.2 Data Structures . 76
4.2.3 Data Types . 77
4.2.4 Entering Numerical Values . 79
4.2.5 Global Variables (Parameters) 79
4.2.6 Global Arrays . 80
4.2.7 System Variables . 82
4.2.8 Local Variables and Arrays . 82

4.3 Variables and Arrays – Details . 83
4.3.1 Variables and Arrays in the Data Memory 83
4.3.2 Memory Areas . 84
4.3.3 2-dimensional Arrays . 85
4.3.4 The Data Structure FIFO . 87
4.3.5 Strings . 88

Normal Assignment . 89
Character Assignment via Escape Sequence 90
String Assignments that are NOT Recommended. 91

4.4 Expressions . 92
4.4.1 Evaluation of Operators . 92
4.4.2 Type Conversion . 94

4.5 Selection structures, Loops and Modules. 96
4.5.1 Subroutine and Function Macros 96
4.5.2 Include-Files . 97
4.5.3 Libraries . 97

5 Optimizing Processes . 99
5.1 Measuring the Processing Time . 99
5.2 Useful Information. 100
5.2.1 Accessing Hardware Addresses 100
5.2.2 Constants instead of Variables 100
5.2.3 Faster Measurement Function 101
5.2.4 Setting Waiting Times Exactly 101
5.2.5 Using Waiting Times . 103
5.2.6 Optimization with Processor T11 105

5.3 Debugging and Analysis . 105
5.3.1 Finding Run-time Errors (Debug Mode) 106
5.3.2 Check the Timing Characteristics (Timing Mode) 106

Checking Number and Priority of Processes 107
Optimal Timing Characteristics of Processes 108

Table of contents

VI ADbasic 5.00, Manual March 2010

ADwin
6 Processes in the ADwin System 110

6.1 Process Management . 111
6.1.1 Types of Processes . 111
6.1.2 Processes with High-Priority . 112
6.1.3 Processes with Low-Priority . 112
6.1.4 Communication Process . 113
6.1.5 Memory fragmentation . 113

6.2 Time Characteristics of Processes. 115
6.2.1 Processdelay . 115
6.2.2 Precise Timing of Process Cycles 116
6.2.3 Low-Priority Processes with T11 117
6.2.4 Workload of the ADwin system 118
6.2.5 Different Operating Modes in the Operating System . . 119

6.3 Communication . 120
6.3.1 Data Exchange between Processes 120
6.3.2 Communication between PC and ADwin System 121
6.3.3 The Device Number . 121
6.3.4 Communication with Development Environments 122

7 Instruction Reference . 123
7.1 Instruction Syntax . 123
7.2 Instructions for L16, Gold, Pro . 124
7.3 FFT Library . 262
7.4 Mathematics Instructions . 281

8 How to Solve Problems? . 283

 Appendix . A-1
A.1 Short-Cuts in ADbasic . A-1
A.2 ASCII-Character Set . A-3
A.3 License Agreement . A-4
A.4 Command Line Calling . A-7
A.5 Obsolete Program Parts . A-13
A.6 List of Debug Error messages . A-17
A.7 Index . A-19
A.8 Instructions in this manual . A-36

ADbasic 5.00, Manual March 2010

ADwin

1

Dear Reader,

ADbasic 5 is the programming tool for your ADwin system that allows you to
create special measurement, open-loop, or closed-loop control application.
The purpose of this manual is to: introduce you to the basics of programming
real-time processes for the ADwin system; and act as a reference manual.

The development environment ADbasic 5 has been completely re-worked and
now provides a lot of comfort for easy handling and editing (see also "News
in ADbasic 5" on page 5).

The manual has been changed, too: The instruction reference contains the
processor’s calculation commands only. Any instruction for access to input,
outputs or interfaces are described in the appropriate manual of ADwin hard-
ware.

First-time users of ADbasic are recommended to read chapters 1 and 4, in
order to get easily into the subject. This manual assumes that the user has
some programming experience with Basic or any other language. An introduc-
tion to the programming of ADwin systems and example programs can be
found in our "ADbasic Tutorial and Programming Examples" manual.

chapter 3 describes the reworked development environment and is recom-
mended for all users.

If you have any suggestions on how to improve our documentation, don’t hes-
itate to contact us. Your inputs will be greatly appreciated and will help us pro-
vide a system which everyone can easily understand and operate.

We wish you great success upon programming.

For further questions, please, call our support hot-line (see address in the
manual’s cover page).

message

Conventions

ADbasic 5.00, Manual March 2010

ADwin

2

Conventions
In this manual the following typographical conventions and icons are used:
This "attention" icon is located next to paragraphs with important information
for correct function and error-free operation.
A note provides topics of interest and advice for an efficient operation.
The "information" icon refers to additional information in the manual or other
sources (documentation, data sheets, literature etc.).
The light bulb icon denotes examples showing practicable solutions.
The Courier font-type is used for text displayed on screen, e.g in windows
or menus, or input via the keyboard. The names of menus and submenus are
shown similarly: Menu submenu.
File names and path names are additionally emphasized as follows
<path\xx.ext>.
Source code elements such as INSTRUCTIONS, variables, comments and
any other text are displayed like the development environment editor does.
Key names are set in square brackets and in small capitals such as [RETURN]
or [CTRL].
The bits of a data word (here 16-bit) are numbered through as follows:

Numbers not indicated in decimal notation have an identifying letter added,
e.g. for the number 17:

– Hexadecimal notation: 11h

– Binary notation: 10001b

Bit no. 15 14 13 … 01 00

Value of the bit 215 214 213 … 21=2 20=1

Name MSB - - - - LSB

Introduction

ADbasic 5.00, Manual March 2010

ADwin

3

1 Introduction
The ADwin system is responsible for all time-critical tasks in fast dynamic test
stands and industrial production facilities. For this task, the ADwin system is
programmed with the ADbasic development tool.
To hit the target of an immediate and efficient start of programming, we first
of all would like to shortly explain the concept of the ADwin system.
All ADwin systems have a central processing unit (CPU), which executes all
time-critical tasks such as: measurement data acquisition, open-loop and
closed-loop control or online processing of measurement data in real-time.
Analog and digital inputs and outputs as well as add-ons like counters and bus
systems are connected to the test stand. Ethernet or USB set up the commu-
nication with a computer.
The processor of the ADwin system is programmed with the real-time
development tool ADbasic, which enables easy construction of time-critical
real-time processes. ADbasic is an integrated development environment
under Windows with capabilities of online debugging. The familiar BASIC
command syntax has been expanded with more functions which are used for
accessing the inputs and outputs, controlling real-time processes, and prepa-
ring the data exchange with the computer. chapter 4 explains the design of
ADbasic programs.

An ADbasic with only a few lines can:

– Acquire measurement parameters up to sampling rates of 800kHz

– Develop fast digital controllers with sampling rates of up to 400kHz

– Simultaneously generate and measure analog signals, e.g. for
dynamic measurement of a test stand characteristic

A user-defined hierarchy is responsible for the interaction and timing of the
processes when several processes are needed for a complex algorithm.
chapter 6 details the running of processes in the operating system.
Source code generated using the extended BASIC syntax of the ADbasic
environment programs the hardware of your ADwin system enabling the
implementation of tasks into processes. chapter 4 describes how to build pro-
grams.

Executable binary code, generated from the source code using the integrated

Introduction

ADbasic 5.00, Manual March 2010

ADwin

4

compiler, is transferred to the ADwin system and tested. ADbasic is also a tool
which aids in process monitoring, error detection, and program optimization
(see chapter 3).
ADbasic is no longer needed once the real-time processes are running pro-
perly.
A user interface running on the computer transfers the generated binary code
to the system, starts, controls and stops the processes, and controls and
monitors the processes and process data of the ADwin system.
Although the ADwin system operates independently of the computer, global
variables and arrays are accessed through the user interface, without delaying
time-critical processes.
A clear separation between real-time processes in the ADwin system and the
user interface on the computer guarantees a high operating reliability and a
good timing.
Under Windows, a DLL or ActiveX-interface enable access to the ADwin sys-
tem from several programs simultaneously.
Based on this, drivers for .NET as well as for many development environments
are available which help in creating a user interface, e.g. Delphi, Visual-Basic,
C#.NET, Visual-C++. Optionally, measurement packages such as TestPoint,
LabVIEW, Diadem, HP-VEE, Intouch and Matlab can be used.
Finally, there are also drivers for the platforms Linux, MacIntosh and Java.

News in ADbasic 5

ADbasic 5.00, Manual March 2010

ADwin

5

2 News in ADbasic 5
You run ADbasic 5 just as usual but with more comfort and a new design.

A lot of new tools hide under the new surface, which often appear at second
glance only. You will soon discover the new functions to make programming
considearbly easier.
Give it a try!

Easier programming

– Autocomplete for instruction or variable using CTRL-SPACE (page 30).

– Inserting code snippets with short-cuts (page 31).

– Displaying declaration of instruction or variable (page 32).

– Displaying declarations of a file (page 32).

– ToDo List to manage uncompleted tasks (page 63).

– New short-cuts (see chapter A.1).

Enhanced source code display

– Indenting text lines automatically (page 18).

– Line numbers at the left margin.

– Syntax highlighting enhanced and with new color palette (page 18).

Please note: An instruction or a variable which is not highlighted, is a
good hint for a wrongly written keyword or a missing include file.

– Colored bars at the left margin for edited lines.

– Folding text ranges (page 19).

Changes and news in the user interface

– New Editor bar, which provides a bunch of new editing functions
(page 17).

News in ADbasic 5

ADbasic 5.00, Manual March 2010

ADwin

6

– New ADtools bar to start the handy tools directly (page 70).

– Tool bar:
• New buttons for Managing Projects (page 35).
• The device no. has moved to the status bar.

– Project, parameter and process window are combined as Toolbox
(page 57).

– The Project Window (page 57) displays files sorted into groups of
source code files and include files.

– The source code window has a tab at the top for each open file.

– The Status Bar displays some of the current settings (page 61).

A double click on a setting opens the appropriate dialog box.

Quicker search and find

– Finding and replacing text across several files (page 21); even Regular
expression are available (page 26).

– Using bookmarks (page 28).

– Jump to a program line (page 29).

– Jumping to declaration of instruction or variable (page 29).

Miscellaneous

– Source code files are saved with a new format.

To use files with ADbasic 4 furthermore, you can save them using
Save as with the file type ADbasic4 Bas-File.

News in ADbasic 5

ADbasic 5.00, Manual March 2010

ADwin

7

Also library source codes have their own file format ((file type LibFile
with file extension *.bas). Only this file format allows to create a libra-
ry binary file.

– You may compile all files of a project–and create both binary files and
library files–with a single click:
Menu Build, menu entry Make All Bin files of Project.

– Before compiling, all changed files are automatically saved (with
ADbasic 5 format, see above)

– You can use relative paths for Include or Library files.

The base directory is–if the the source code is member of the
project–the directory of the project file, otherwise the directory of the
source code file.

– Command Line Calling has been reworked completely and enhanced
(see chapter A.4, see annex page 7). Because of the changes, com-
mand line calls are not compatible to ADbasic 4.

ADbasic 5.00, Manual March 2010

ADwin

8

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

9

3 Development Environment
Processes for the ADwin systems are quickly and easily programmed with the
ADbasic development environment. The ADbasic compiler works with an
enlarged BASIC syntax and generates binary files, which may be executed
and transferred to the ADwin system even without the development environ-
ment.

3.1 Basic Steps

3.1.1 Starting the Development Environment

To start the ADbasic development environment, do as follows:

1. Start the development environment by selecting Programs ADwin
ADbasic from the Windows start menu.

The first start may last a few seconds until the environment shows up,
since the Windows package .Net Framework is started, too.

The environment will appear with the Windows-specific elements such
as windows, menu bar and tool bar.

2. Upon first start-up, you will be prompted to enter the License key.
The License key is to be found on the cover sheet of this ADbasic
manual.

Without valid License key, ADbasic will operate in demo mode. In this
mode the development environment only works for demonstration, test
or evaluation purposes. For example, you cannot create binary files.

Find more information about the ADbasic license in chapter 3.1.2 on
page 9.

3. Set the ADwin system and processor in the menu Options\Com-
piler.

The development environment saves the settings so that upon a new
start of ADbasic they will not need to be entered again, unless a differ-
ent ADwin device is used.

3.1.2 Check or change ADbasic licenses

In order to check or change the ADbasic license key, do as follows:

1. Select the menu entry Help About.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

10

The window About ADbasic opens which displays the version of the
development environment and the current Licenses (list of available
licenses see below).

2. In order to enter or change the
license key click the button
Change License.

The dialog window License
key opens.

3. Enter your license key.

The License key is to be
found on the cover sheet of
this ADbasic manual.

In ADbasic, the following licenses are available:
– No license (demo mode)

Without valid License key, ADbasic will operate in demo mode. In
this mode the development environment only works for demonstration,
test or evaluation purposes. For example, you cannot create binary
files.

– Evaluation license (expiring by date)

The license enables all functions of the development environment for
a fixed period. Afterwards, ADbasic will run in demo mode again (see
above).

– Non-expiring license of the Licensee

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

11

The following licenses can be enabled:
• ADbasic 5, works with all ADwin processors
• ADbasic 3.0, works with ADwin processors up to version T9
• ADbasic 2.0, works with ADwin processors up to version T8
• TiCoBasic
• ADlab (Matlab driver for ADwin)

The TiCoBasic and ADlab licenses can be combined with one of the
ADbasic licenses.

The license conditions for ADbasic are described in the License Agree-
ment (annex see A-4).

3.1.3 Loading the ADwin Operating System

The ADwin operating system is loaded to your ADwin system by clicking
(= boot).

The booting process must be repeated each time the ADwin system is pow-
ered up, after a power failure, or when the computer recognizes a communi-
cation error which has interrupted the communciation with the system.

The contents of the program and data memories on the ADwin system will be
lost and all global parameters set to the value 0 when the operating system is
booted.

An appropriate operating system for each processor type is needed and can
be found in the corresponding file ADwin*.btl, (* stands for the processor
type). The development environment uses the information from the Options
\ Compiler menu setting to determine which of the files to use during the
boot process.

The files ADwin*.btl are saved during installation in the directory
<C:\ADwin> (standard installation).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

12

3.1.4 Basic Elements of the Development Environment

The development environment consists of several bars and windows (see
fig. 1); the window dimensions may be individually adjusted.

Online help for a window or the currently marked key word is called with the
key [F1]. The button opens the help index.

Fig. 1 – Elements of the ADbasic development environment

The functions of the development environment are called using:
– The tool bar and the editor bar (see fig. 2).
– The context menus of the windows (right mouse button).
– The menu bar.
– The Short-Cuts in ADbasic (see annex).

While using a function, the function’s description is shown at the left of the sta-
tus bar.

Project window Tool bar

Title bar

Parameter
window

Menu bar

Info range

Source code
window (editor)

Processdelay

Source code
status bar

Status bar

Editor bar

ADtools bar

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

13

Fig. 2 – The tool bar

An instruction is selected when a menu entry is clicked with the left mouse but-
ton, or when the keys [ALT] + [FIRST LETTER] of the corresponding menu, are
pressed. Some instructions have short-cuts (see Appendix A.1), which are
displayed in the menus.

Each process is edited in its own source code window. Several windows may
be opened at a time; the sizes of the windows can be individually adjusted.
More information about the relevant source code window is displayed at var-
ious other locations:
– The title bar shows the names of the open source code window.
– The source code status bar displays the process options that have

been set.

A right-click on the bar opens the Process Options dialog box.
– The global parameters used in the source code project are highlighted

in the Parameter Window (see chapter 3.8.3, page 58) by clicking
Scan Global Variables ; see Displaying used global variables
and arrays on page 34.

New file Save file

Open file

Start
process

Stop
process

Compile

Print file

Print
preview

Update
system

information

Boot
ADwin

Open
project Help

New
project

Save
project

files

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

14

– The info range at the bottom displays information in several windows:
• Info window: The compiler’s error messages (highlighted red) and

warnings (see chapter 3.9.1 on page 62).
• ToDo List: A simple ToDo list from comment lines (see

chapter 3.9.2 on page 63).
• Search results from a search in all files of a project (see

chapter 3.4.2 on page 21).
• Debug information if the debug mode is enabled (see Debug mode

Option, page 52).

Please note: Editing in the source code window is supported by several tools
(see Creating source code on page 15).

The Project Window shows the name of an opened project and the corre-
sponding files; without project the window remains empty.

Some data of the ADwin system are continuously read and displayed (only
when PC communication to the ADwin system is established):
– Processdelay (process cycle time) of the process which has the num-

ber as the currently edited source code. Displayed at the right side of
the toolbar.

– The values of the global variables in the Parameter Window; a change
to one of these values will immediately be transferred to the ADwin sys-
tem.

– The status of running processes in the Process Window (page 60).
– Memory usage information in the Status Bar (see chapter 3.8.5 on

page 61).

According to compiler settings, additional information is available about run-
ning processes :
– Process timing: Timing window (page 48)
– Run-time errors: Debug window (page 52)

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

15

3.2 Creating source code
Open a new window for each process source code (using File New).

If you use several files for your task, we recommend to manage the files in a
project file (see page 35: Managing Projects).

Editor and ADbasic compiler do not bother about upper or lower case letters.
However, in the examples throughout this manual-for the purpose of better
reading-a consistent notation is used.

Calling online help (see below) is a good idea when you need a guide for edit-
ing or programming.

The source code editor provides several useful tools. Call the tools via Context
menu in source code window (page 16) or via Editor bar (page 17):

Numerical values may be entered into source code in hexadecimal, binary and
exponential notation, as well as in decimal (see also chapter 4.2.4).

Find more editor functions here:
– Formatting source code, page 17
– Searching and replacing, page 20
– Writing programs with ease, page 29

3.2.1 Calling online help

The Help Menu (page 55) enables to call selected help pages, e.g. table of
contents or sorted instruction lists.

Using [F1] opens a help page according to the currently opened dialog box
or according to the instruction at cursor position.

If the cursor is set upon an invalid instruction the help index shows up. Rea-
sons may be:
– The text is not an instruction but a user-defined declaration: Variable /

array, symbolic name, macro (Sub, Function). For a user define, a help
page cannot be provided.

– The instruction is misspelled, e.g. Digin_Wrod instead of
DIGIN_WORD. After being corrected, the instruction will be highlighted
correctly.

–

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

16

– The (user-defined) include or library file is missing where the instruc-
tion is defined. Please insert the appropriate line at the start of the
source code.

3.2.2 Context menu in source code window

Various help functions are available from the context menu by right-clicking in
the source code window.

The following functions use the cursor position or the active selection:
– Cut: Cut selection and copy into the clipboard.
– Copy: Copy selection into the clipboard.
– Paste: Delete selection and insert text from the clipboard.
– Comment Block, Uncomment Block: Changing lines into comment,

page 19.
– Indent, Outdent: Indenting text lines, page 18.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

17

– Mark Control block, Unmark Control block: Marking control
blocks, page 28.

– Declaration Info: Displaying declaration of instruction or variable,
page 32.

– Jump to Declaration: Jumping to declaration of instruction or vari-
able, page 29.

These functions are available without marking:
– Add to Project: Add a file to the project.
– Code snippets: Inserting code snippets, page 31.
– Show all Declarations: Displaying declarations of a file, page 32.

3.2.3 Editor bar

The editor bar provides editor tools for use in the source code window.

3.3 Formatting source code
Source code can be (mostly automatically) formatted to clearly show the pro-
gram structure:

Using bookmarks, page 28.

Changing lines into comment, page 19.

Folding text ranges, page 19.

Displaying declaration of instruction or variable, page 32.

Jumping to declaration of instruction or variable, page 29.

Inserting code snippets, page 31.

Displaying declarations of a file, page 32.

Undo the previous editing action or redo it.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

18

– Syntax highlighting, page 18
– Smart formatting, page 18
– Indenting text lines, page 18
– Changing lines into comment, page 19
– Folding text ranges, page 19

Find more editor functions in the sections:
– Creating source code, page 15
– Searching and replacing, page 20
– Writing programs with ease, page 29

3.3.1 Syntax highlighting

Once a command line is written, the editor will automatically change the color
of the instruction words, variable names and array names, while indenting the
lines to give a clear structure.

The editor divides the character strings you have entered, into several groups
of syntax elements being displayed differently. The color design may be
changedunder Options Settings, Editor - Syntax Highlight (see
page 46); the window also shows an overview of syntax groups.

Syntax highlighting requires an active option Parse Declarations under
Editor - General (see page 45).

3.3.2 Smart formatting

Once a command line is written, the editor will automatically correct the num-
ber of spaces, thus giving the line a clear structure. This way e.g. operators
like "=" or keywords like "IF" will have a space to left and right.

If you like to format manually you have to switch off smart format under Editor
- General, Smart format (see page 45).

3.3.3 Indenting text lines

Once a command line is written, the editor will automatically indent the lines
to give a clear structure. Manual indenting is not available in combination with
automatic indenting.

If you like to indent manually you have to switch off automatic indentation
under Editor - General, AutoIndent. Afterwards, indents may be set with
[TAB] or [SPACE]. Several marked lines may be indented or outdented by sel-

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

19

ecting Indent oder Outdent in the source code context menu (right mouse
click).

The menu entry Options Settings, Editor - General, Tabsize be used
to set the number of spaces for one indent.

3.3.4 Changing lines into comment

Marked lines may be changed into comment lines in one action by selecting
the menu entry Comment Block from the source code context menu (right
mouse click). The editor will then insert a comment char ' at every of the
marked lines so the compiler will skip these lines.

In the same way Uncomment Block will delete a comment char at the start
of the lines.

3.3.5 Folding text ranges

The editor recognizes control structures like conditions or loops, program sec-
tions, macros and library modules as foldable text ranges. These ranges are
marked by a grey line to the left of the line start, with a minus sign in the first
line of the range.

You fold a range with click on the minus sign in the first line; in the example
below you would click left of FUNCTION sumsquare.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

20

Using the button Toggle Outlining all folable text ranges may be
folded or ununfolded at once.

Foldable text ranges can be recognized only, if the option Parse Declara-
tions under Editor - General (see page 45) is active.

3.4 Searching and replacing
Find, mark or replace any part of source code with these functions:
– Finding text quickly, page 21
– Finding and replacing text, page 21
– Regular expression, page 26
– Marking control blocks, page 28
– Using bookmarks, page 28
– Jumping to declaration of instruction or variable, page 29

There are more editor functions:
– Creating source code, page 15
– Formatting source code, page 17

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

21

– Writing programs with ease, page 29

3.4.1 Finding text quickly

You can find text quickly using the short-cut [CTRL]-[F3]. There is also the
short-cut [CTRL]-[SHIFT]-[F3] to start a quick find backward.

Find uses the marked text or–if no text is marked–the word at cursor position.
The following find options are fixed:
– Uppercase and lowercase letters are of no importance.
– Find text also as part of a word.
– Folded text areas are searched.
– All open documents are searched.

Using quick find, you cannot use regular expressions nor can you create book-
marks.

3.4.2 Finding and replacing text

You can find each occurrence of a combination of any characters, including
uppercase and lowercase characters, whole words, or parts of words, or reg-
ular expression (see Regular expression on page 26).

1. Select the menu entry Edit Find to search or Edit Replace to
replace. A dialog box opens which remains on the screen until you
close it.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

22

2. In the Find what box, type in the search string, or choose a previous
string from the drop-down list.

3. Replace only: Type the replacement expression in the Replace With
box, or choose a previous string from the drop-down list.

4. Set the scope of the search.

Option Description

Match case Option active: Find text having the given pattern
of uppercase and lowercase letters.

Option inactive: Uppercase and lowercase letters
are of no importance.

Match whole
word

Option active: Find occurrences of the text as
whole words.

Option inactive: Find text also as part of a word.

Search hid-
den text

The option refers to Folding text ranges (see
page 19).

Option active: Folded text areas are searched.

Option inactive: Folded atext areas are skipped.

Search up Option active: Search in direction to start of file.

Option inactive: Search in direction to end of file.

Use regular
expressions

Specify that the search string is a Regular
expression (see page 26).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

23

5. Set the search range.

Prompt on
replace

Option valid with Replace All only.

Option active: Each occurence opens a dialog
box to control replacing.

Option inactive: All occurences are replaced with-
out query.

Option Description

Current
Document

Start search in the current source code at cursor
position.

If text is selected, the cursor is positioned behind
the selection.

All open
Documents

All open documents are searched, starting with
the current source code.

Selection
only

Only the selected range is searched.

If no selection is given, search starts at cursor
position.

All Docu-
ments of
Project

All files of the project are searched, not regarding
whether the current source code is also part of
the project. Cannot be used for replace.

The results are shown at the bottom in a window.
Double click a result to jump to the appropriate
code line or use the arrow buttons.

Option Description

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

24

6. Start the action with one of the buttons.
• Find Next: If the search string is found, the screen scrolls so you

can see the text in context.
• Replace: Replace the current selection and select the next

occurrence.
• Replace All: Replace all occurrences of the search text, in the

specified scope.
• Bookmark All: Place a bookmark on each line containing the

search string.

7. Close the dialog by clicking the Close button, or continue editing as
normal.

With the option All Documents of Project, the dialog closes auto-
matically. Search results are shown in the Find Window in the info
range below.

Notes
– The menu entry Edit Find Next finds the next occurence of the

search string using the current search options, even if the Find dialog
box is closed.

– The action Replace replaces selected text only, when the selection
fits to the search string.

– Beware of replacing a pattern that is matched with a regular expression
that can optionally match nothing, such as ".+" or "a*". In these
degenerate cases, the editor can go into a loop, until the line becomes
too long.

– Hint: If you want to use regular expressions for a great number of
replacements in one or even all all open documents, you should use
Find Next and Replace to make sure you have spelled the replace-
ment string correctly, before replacing the rest with Replace All.

Examples - Finding Text

Examples for finding text with Regular expressions.
– Find all spaces or tabs at the end of a line:

[]+$

The search string finds one or more spaces or tabs, being followed by
the end of the line.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

25

– Find everything on a line:
^.+

The search string finds the beginning of a line, followed by one or more
of any characters, up to the end of the line.

– Find $12.34:
\$12\.34

Note that . and $ have been escaped using the backslash \ to hide
their regular expression meanings.

– Find a string, which is valid as variable name in ADbasic:
\b[a-z][_a-z0-9]*

The search string finds a word starting with a alphabetic character, fol-
lowed by zero, one or more underscores or alphanumeric characters.

– Find an inner-most bracketed expression:
\([^\(\)]*\)

The search string finds a left bracket, followed by zero or more char-
acters excluding left and right brackets, followed by a right bracket.

– Find a repeated expression:
([0-9]+)-\1

Th search string in braces (…) finds one or more digits; the braces de-
fine the tagged expression. It is followed by a hyphen, followed by the
string matched by the tagged expression. So this regular expression
will find 14-14 and 08-08, but not 08-15.

Examples - Replacing Text

Examples for replacing text with Regular expressions.
– Find two numeric strings separated by one or more spaces:

([0-9]+) +([0-9]+)

and swap them around, using a colon to separate them:
$2:$1

– To change simultaneously:

from X100000 to X100.000

from Y100123 to Y100.123

from Z600 to Z.600

Search: ([XYZ])([0-9]*)([0-9][0-9][0-9])

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

26

Replace by: $1$2.$3

3.4.3 Regular expression

A regular expression is a search string that uses so called meta characters to
match patterns of text. Meta characters are valid with the Find command only,
not with the Replace command.

To use a regular expression for search/replace, check the option Use regu-
lar expressions in the dialog box. With active option, the buttons > to the
right of the input fields are enabled, where you can select meta chars.

The syntax of regular expressions is defined in the .NET-Framework 2.0. a
more A detailed description be found on the Internet at the address
http://msdn2.microsoft.com (search for „regular expressions“).

Meta -
zeichen:

Bedeutung:

. Any single character.

Example: Ma.s matches Mats, Mars und Mads, but not Mas.

[] Any one of the characters

1. given explicitely in brackets, or

2. any of a range of characters separated by a hyphen (-).

Examples: h[aeiou][a-z]d matches: hard, head, hand and
hold; [A-Za-z] matches any single letter. The regular expres-
sion x[0-9] matches x0, x1, …, x9.

[^] Any characters except for those after the caret ^.

Example: h[^uo]t matches hat and hit, but not hot or hut.

^ The start of a line (column 1).

Example: The search string ^start matches start only,
when it is the first word on a line.

$ The end of a line (not the line break characters). Use this for
restricting matches to characters at the end of a line, but not \n.

Example: end$ only matches end when it is the last word on a
line.

\b The start of a word.

\B The end of a word.

http://msdn2.microsoft.com
http://msdn2.microsoft.com

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

27

\n A new line character, for matching expressions that span line
boundaries.

A \n cannot be followed by operators *, + or {}. Do not use this
for constraining matches to the end of a line. It's much more effi-
cient to use "$".

() Expression in braces is stored as pattern in internal registers.
The register content may be re-used in the search or replace-
ment string.

Up to 9 patterns can be stored, numbered according to their
order in the regular expression. The corresponding replacement
expression is $x and \x in the search string, for x in the range
1…9.

Example: If the search string ([a-z]+) ([a-z]+) matches
guide user, $2 $1 would replace it with user guide.

* Matches zero, one or more of the preceding characters or
expressions.

Example: ha*d matches hd, had and haad.

? Matches zero or one of the preceding characters or expres-
sions.

Example: ha?d matches hd and had, but not haad.

+ Matches one or more of the preceding characters or expres-
sions.

Example: ha+d matches had and haad, but not hd.

| Matches either the expression to its left or its right.

Example: had|haad matches had, or haad.

\ "Escapes" the special meaning of the above expressions, so
that they can be matched as literal characters. Hence, to match
a literal backslash \, you must use \\.

Example: ^a matches an a at the start of a line, but \^a
matches the string ^a.

Meta -
zeichen:

Bedeutung:

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

28

3.4.4 Marking control blocks

The lines of a control block may be highlighted altogether, e.g. to optically
check nested structures. To do so, place the cursor on the keyword of a control
block and select Mark Control block from the source code context menu
(right mouse click).
Only one control block can be highlighted at a time.

The highlighting is removed using Unmark Control block (context menu).
The cursor position does not matter in this case.

The following control block can be highlighted:
– Program sections INIT:, LOWINIT:, EVENT:, FINISH:
– DO … UNTIL

– FOR … NEXT

– IF … ENDIF

– SELECTCASE … ENDSELECT

– FUNCTION … ENDFUNCTION

– SUB … ENDSUB

– LIB_FUNCTION … LIB_ENDFUNCTION

– LIB_SUB … LIB_ENDSUB

All control structures are also foldable text ranges (see Folding text ranges on
page 19).

3.4.5 Using bookmarks

Bookmarks mark selected source code lines. You can jump to bookmarked
lines.

You can use these actions:
– Set a Bookmark

Bookmark a line either with the Toggle Bookmark button from the ed-
itor bar or click Bookmark All in the Replace dialog box.

Use Toggle Bookmark to remove single bookmarks.
– Go to Next Bookmark

Select the Next Bookmark button from the editor bar.
– Go to Previous Bookmark

Select the Previous Bookmark button from the editor bar.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

29

– Remove all Bookmarks

Select the Delete all Bookmark button from the editor bar.

Use Toggle Bookmark to remove single bookmarks.

Bookmarks are saved together with the source code file.

3.4.6 Jump to a program line

You can jump to a program line in the source code with a double click on the
line number in the status bar or by selecting GoTo Line in the Edit menu. A
dialog box opens, where you enter the nuber of the desired program line.

To show source code line numbers, the option show linenumbers under
Editor - General (see page 45) must be enabled.

3.4.7 Jumping to declaration of instruction or variable

From a variable name, you can directly jump the variable’s declaration. This
is true for all self-declared names: local variables, arrays, instructions (SUB,
FUNCTION) and symbolic names (#DEFINE).

To jump to a declaration, you place the cursor on the self-declared name and
then either select Jump to Declaration from the context menu (right mouse
click), or click the Jump to Declaration button in the editor bar.

A jump to declaration is only available, when the option Parse Declara-
tions under Editor - General (see page 45) is active.

Of course, the jump is not available for instructions of standard include files as
well as for global variables PAR / FPAR.

3.5 Writing programs with ease
Be at ease while programming using the following functions:
– Autocomplete for instruction or variable, page 30
– Documenting self-defined instructions and variables, page 52
– Inserting code snippets, page 31
– Displaying declaration of instruction or variable, page 32
– Displaying declarations of a file, page 32
– Displaying used global variables and arrays, page 34

Find more editor functions here:
– Creating source code, page 15

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

30

– Formatting source code, page 17
– Searching and replacing, page 20

3.5.1 Autocomplete for instruction or variable

You can use autocomplete to type keywords, instruction and variable names
and even code snippets: Type some of the name’s first characters and press
[CTRL-SPACE].

Using autocomplete, you don’t have to type instructions or variables com-
pletely.

Do as follows:

1. Write the first letters of the word and press CTRL-SPACE.

A drop-down list opens the entries of which will fit to complete the pre-
vious letters.

If you use autocomplete behind a space character, the list will contain
all available keywords.

2. Select the desired list entry with mouse or arrow keys.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

31

After a moment, an annotation to the selected list entry is displayed to
the right: The decalration of the instruction or variable, the string "Re-
served Keyword" or the complete code snippet. (see below).

3. If you continue typing a name, the drop-down list is not updated auto-
matically. Press CTRL-SPACE again for a list update.

4. To insert the selected string you simply type a brace open (best for an
instruction) or a space.

Else, you could also use the [RETURN] key or type any other non-al-
phanumeric char.

Autocomplete is only available, when the option Parse Declarations
under Editor - General (see page 45) is active.

3.5.2 Inserting code snippets

The editor provides the use of pre-defined code snippets, given in a collection.
According to its definition, a code snippet can expand to some characters,
some lines or a complete program listing.

To insert a code snippet at cursor position, do one of the following:
– Enter the first letters of a code snippet keyword, e.g. Sele for a Select-

Case structure, select the code snippet from the list and press
CTRL-SPACE (see also Autocomplete for instruction or variable).

– Use Codesnippets from the context menu or from the editor bar.

A drop-down list with folders opens, which each contain several code
snippets (or more folders).

Navigate through the folders via mouse or via keyboard. The following
keys be used:

• Arrow up/down: Select list entry
• Return: Insert selected code snippet or open folder.
• Backspace: Return to previous folder level.

After you have selected a code snippet the appropriate keyboard short-
cut is displayed to the right.

– Insert the shortcut of a code snippet, followed by [TAB].

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

32

To display a list of code snippets and short-cuts, open <codesnip-
pets.xml> in the folder C:\ADwin\ADbasic\Common\ with a browser.

3.5.3 Displaying instruction parameters

The passed parameters of an instruction are displayed automatically, as soon
as you type in the opening brace after the instruction’s name. While you type
in the parameter expressions, the appropriate passed parameters is displayed
bold in the tooltip.

The tooltip vanishes as soon as the cursor is placed outside the braes around
the parameters. You can re-activate the tooltip if you retype the opening brace.
Alternatively, you can call the function Declaration Info from the context
menu or the editor bar to display the complete declaration of the instruction.

The display of instruction parameters is only available, when the option Parse
Declarations under Editor - General (see page 45) is active.

3.5.4 Displaying declaration of instruction or variable

From an instruction, a variable name, or any declared keyword, you can dis-
play its declaration and notes as tooltip, when you
– move the mouse over the keyword.

The declaration is displayed only, when the option Automatic quick
info tips under Editor - General (see page 45) is active.

– set the cursor on the keyword and press [F2].
– set the cursor on the keyword and select Declaration Info in the

editor bar or in the context menu.

The function is available for all keywords which belong to the language or are
self-declared: local and global variables, arrays, instructions (SUB, FUNC-
TION) and symbolic names (#DEFINE).

The display of declarations is only available, when the option Parse Decla-
rations under Editor - General (see page 45) is active.

3.5.5 Displaying declarations of a file

To display all declarations, include and library files referring to a source file,
set the Declarations Window to the foreground (see page 69). Declarations of
other source code files will not be displayed–even if combined within a project.

The display of declarations is only available, when the option Parse Decla-
rations under Editor - General (see page 45) is active.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

33

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

34

3.5.6 Displaying used global variables and arrays

You can display global variables and arrays being used in the active source
code and in the appropriate project (if present) by a click on the Scan Global
Variables button in the Parameter Window (see also page 58).

This results in two displays:
– the Global Variables Window displays all used global variables and

arrays.
– in the Parameter Window the used global variables (not the arrays) are

highlighted.

The highlighting uses three colors, according to the use of parameters:

Using the Clear Scan button both displays are cleared.

If If you change the source code the displays are not updated automatically.
To do so, click the Scan Global Variables button again.

• Green: Parameter is used in the active source
code only.

• Red: Parameter is used both in the active source
code, and in another source code of the
project, too.

• Blue: Parameter is used in an inactive source
code of the project, and not in the active
source code.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

35

3.6 Managing Projects
One project can manage many process source codes, include files and library
files, for instance when programming an application with several processes.
Only one project can be open at a time.

The project file also saves the display parameters of the development envi-
ronment: window position, size, open project files. Thus, with opening a
project, the display will be rearranged.

A project allows the user:
– Displaying used global variables and arrays of a project (see page 34).
– Compile all files of project at once, using the menu entry Build Make

all Bin Files of Project.
– Search through all files of a project, including not yet opened files.

Just enable the All Documents of Project option in the find win-
dow (see chapter 3.4.2 "Finding and replacing text"). The option is not
available for replacing.

– Save all files of project at once, using Save all Files of Project
from the project window context menu.

Project-related capabilites can be accessed via project window context menu
(right mouse click, see "Project Window" on page 57) or in the menu File.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

36

3.7 Menus
The menu bar contains these menus:

– File: Manage files and projects (page 37)

– Edit: Edit source codes (page 38)

– View: Show windows and bars (page 38)

– Build: Tool for generating executable programs (page 39)

– Options: Program settings (page 40)

– Debug: Tools for error detection (page 48)

– Tools: Various help functions (page 54)

– Window: Arrange source code windows (page 55)

– Help: Help, version and license information (page 55)

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

37

3.7.1 File Menu

The File menu contains instruc-
tions for managing files and projects.

Fi les can be opened, created,
saved, or closed. ultiple source code
windows may be open simulta-
neously, no more than ten pro-
cesses may be loaded to the ADwin
system at a time.

Projects can also be opened, saved
and created in the same way as files,
with the exception that no more than
one project can be open at a time.
More instructions are available in the
project window (see chapter 3.8.2).

The print functions can also be found
in the menu.

Under Recent Files and Recent
Projects a l ist of previously
opened files and projects is dis-
played.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

38

3.7.2 Edit Menu

3.7.3 View Menu

With Restore Default Layout, the default layout, which was active at the
initial start of the ADbasic program, can be restored with a single mouse-click.
This refers also to the Toolbox setttings (page 57).

The menu Edit contains the edit func-
tions, in accordance with the standard
Windows conventions.

Moreover the menu offers functions for
searching (Find, Find Next) and
replacing (Replace); see Finding and
replacing text on page 21.

Unforeseen errors may occur when
inserting characters or program lines
from other programs with "Cut and
Paste" into the source code, and there-
fore is not recommended.

In the View menu you may open or
close
– the tool bar
– the editor bar
– the ADtools bar
– the status bar.

You find further information about the
process window in chapter 3.8.4 on
page 60, about the toolbar see fig. 2.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

39

3.7.4 Build Menu

With the Build menu, the active source code can be compiled into
– a process using Compile.
– a binary file using Make Bin File.
– a library using Make Lib File.
– all files of the project to binary files using Make all Bin Files of

Project.

Please note: Before compiling, all changed source code, library- and include
files are saved automatically (AutoSave).

A change of file may occur by automatic indenting of text lines (see
chapter 3.3.3 on page 18), for example when opening a previously unformat-
ted file.

Compile is the most comprehensive instruction: It compiles the source code,
transfers the generated binary file as process to the ADwin system and
starts the process.

The process is only started automatically if the Autostart option, in
the Options\Compiler menu, is set to Yes. Otherwise, the process
can be started with the button in the toolbar or in the process win-
dow (see page 60).

If the compiler detects errors or critical sequences in the source code,
it is shown in the Info window. A double click highlights the appropriate
line in red.

Make Bin File is only available for licensed ADbasic users. It compiles the
active source code into a binary file and saves it automatically. The file is
stored in the directory of the source code file, but with the extension .Txn.
The x denotes the processor type and n the process number (see Options
Menu, Process Options dialog box).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

40

A binary file with the extension <*.TA3> can be transferred to an AD-
win system equipped with a T10 processor, which administers it as pro-
cess 3. Binary files can be transferred to the ADwin system from
development environments such as C or Visual Basic (see
chapter 6.3.4 on page 120).

Make Lib File is available for licensed ADbasic users only. It compiles the
active source code–the file must be saved as file type LibFile–into a
binary file and automatically saves it as library file. The library is stored in
the same directory and with the same name as the source code file, but
with the file extension .LIx. (where x denotes the processor type.)
Afterwards the library can be included into other source codes that use
their functions and subroutines (see chapter 4.5.1 on page 94).

Make All Bin Files of Project is available for licensed ADbasic users
only. The function refers to both Make Lib File and Make Bin File: The
function compiles all source code files of the project. and creates both
library files and binary files.

3.7.5 Options Menu

Compiler Options dialog box

The settings in this dialog box are used in every source code compilation. In
particular the information refers to the ADwin systemon which the compiled
source codes are to be executed as process.

To compile source codes for different ADwin systems, the parameters need to
be set for each system in the dialog box.

In the Options menu a number of options can be
set which will have an immediate effect. For each
menu item a dialog box opens where the settings
are entered.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

41

Fig. 3 – The Compiler Options dialog box

– System: Select the ADwin system.
– Processor: Select the system’s processor type.

The abbreviations correspond to the following full names:

Fig. 4 – Processor Names

– Device No.: Select the device number to access the ADwin system.

The device number is set using the program <ADconfig.exe>. The
default setting is 150 Hex.

– Do not access the Device: If inactive, a binary file will be automat-
ically transferred to the hardware after compilation. Thus, the ADwin
hardware must be connected before compilation.

Abbreviation T11 T10 T9 T8 T5 T4 T2

Full name ADSP
TS101S

ADSP
21160

ADSP
21062 T805 T450 T400 T225

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

42

With active option, a source code can be compiled, even if the ADwin
hardware is not connected to the PC.

– Load standard processes: With active option the standard pro-
cesses 11, 12 and 15 (see chapter 6.1.1 on page 109) are loaded into
the ADwin system during boot process. With inactive option the loading
of processes 11 and 12 is suppressed.

This setting is only available for ADwin-Gold and ADwin-light-16.
– Autostart: Active option causes the binary file, generated and trans-

ferred to the ADwin system during compilaton, to be immediately
started. With inactive option, the process requires to be started by
clicking the button in the toolbar or in the process window.

– Remember Device No.: Active option saves the last used Device No.
(see above) on closing ADbasic; the next start-up will automatically
use the saved number.

Inactive option skips saving the device number. Thus, ADbasic starts
up with the formerly (when Yes was set) saved device number NONE.

Process Options dialog box

This dialog box contains the compiler options for the currently opened source
code window; the properties of the process which is to be compiled from the
opened source code and transferred to the ADwin system.

This applies to library files as well, where only the option Optimize can be
set.

Each process must be configured separately by opening the dialog box for
each source code window, unless using the default settings. To quickly open
this window do a double click on the source code’s status bar.

The dialog box for T4, T5 or T8 processors differs slightly from the standard
dialog box and is described in the Appendix A-5.1.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

43

Fig. 5 – The Process Options dialog box

– Process: Process number

The number under which the transferred process is started on the sys-
tem.

If there is more than one process to be run, each process must have
its own process number.

– Eventsource: Sets the event source signal which initiates the
EVENT: section of the process.

• Timer
sets the internal counter as event signal. The system variable
PROCESSDELAY determines the delay in which the counter creates
an event signal.

• External
sets the (external) signal the event input of the ADwin system as

Settings for source code

Settings for library

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

44

event signal, for instance a sensor impulse. In this case, the
Priority option must be set to High anyway.
How you can use an external event input in an ADwin-Pro system,
is explained in the ADwin-Pro software documentation under
EventEnable.

– Priority: The priority of the process.

Set the priority the process will be run with in the ADwin hardware. For
more information see chapter 6.1.1 "Types of Processes".

Level (-10…+10) defines the priority within processes with low prior-
ity, so that a process with a higher Level can interrupt those with a
lower level, but not vice versa. A higher number represents a higher
level.

– Optimize: Status and level of compiler optimization.

Compiler optimization, which may be used optionally, can reduce the
execution time of the process by up to 20 percent. A higher setting un-
der Level will lead to shorter execution times.

Under certain circumstances, a process causing unexpected compiler
or run-time errors can be solved by setting a lower optimization level.

– Initial Processdelay: The initial Processdelay (cycle time) with
which the process is to be started.

– Version: An integer value for differentiating between several versions
of a process.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

45

Settings dialog box

The Settings dialog box has several sheets, which are activated via tree
diagram in the left pane:
– Editor

• Editor - General
• Editor - Syntax Highlight
• Editor - Print Settings

– Language
– Directory
– ADtools

Editor - General

Parse and Indent: The editor can format the source code automatically,
e.g. indent and do syntax highlighting. To do so, the editor must parse all
source codes continuously. The information found is the base for more com-
fortable functions like Autocomplete for instruction or variable, Displaying dec-
larations of a file or Documenting self-defined instructions and variables.

Please note: Continuous parsing of source codes may cause a loss of editor
speed on slow PCs.

Parse Declarations: The editor continuously parses source codes.
Some comfortable functions depend on this function.

Autoindent: Source code is indented automatically. Indent positions
are set via Tabsize. See also "Indenting text lines" on page 18.

Indent ADbasic sections: Program sections are indented by one
tab more.

Smart format: Format lines automatically, see "Smart formatting" on
page 18.

Align comments at specified position: Any comment after
source code is automatically set to the specified Position.

Please note: While using double comment chars '' you can position
a comment manually as before.

Tabsize: Setting, how much spaces make one tab indent. Indenting
is always done with spaces.

Show line numbers: Line numbers are displayed in the gutter left of the
source code. See also „Jump to a program line“ on page 29.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

46

Column mark, visible: A grey line is displayed at the given Position. The
line enables easy line breaking at the desired position, e.g. in order to avoid
long lines for print.

Editor - Syntax Highlight

The editor highlights the syntax elements with different colors; see also
chapter 3.3.1 "Syntax highlighting" on page 18; complete syntax highlighting
reuires an active option Parse Declarations under Editor - General.

You may set the highlighting individually for each syntax element (definition
see liste below):
– Color: Text color.
– Bold: Font style bold.
– Italic: Font style italic.

The example text above shows how source code be formatted.

Set to Default deletes all individual changes and resets default settings.

The editor distinguishes the following syntax elements:
– ADbasic-Syntax (System related):

• ADbasic sections: Keywords INIT:, LOWINIT:, EVENT: and
FINISH: for program sections.

• Compiler Directives: Pre-compiler instructions, starting with a
#.

• Reserved Keywords: Basic instructions in ADbasic.
• Global Variables: Global variables Par_1 … Par_80,

FPar_1 … FPar_80 and Data_1 … DATA_200.
• External Keywords: ADbasic instructions for access to

inputs/outputs. Most of these instructions are declared in the
delivered standard include or library files.

• Symbols: Operators as braces, + or =.
– User related:

• Defined Names: Symbolic names, declared with #DEFINE.
• Local Variables: Variables declared with DIM.
• Sub Names: Names of user-defined modules, declared with SUB or

LIB_SUB.
• Function Names: Names of user-defined modules, declared with

FUNCTION or LIB_FUNCTION.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

47

– Other:
• Numbers: Numbers in decimal, hexadecimal and binary notation.
• Strings: Strings in "double quotes".

– Comments: Comments after REM or quote '.
– Standard Text: All elements which do not belong to other groups.

Editor - Print Settings

The settings refer to printing of source code.

Header refers to the printed header line.

Print Header: A header line is printed on top of each page.

Header text: The text of the header line.

Layout determines the elements of the screen display are to be printed.

Syntax Highlight: Syntax highlighting is printed.

Color: With inactive option the printout is black and white.

Line numbers: Line numbers are printed at the left.

Font size: Sets the font size of the output.

Language

The language in which the error messages of the compiler is displayed.
Options are either Deutsch (german) or English.

Directory

Set the directories where the operating system and the compiler search for
ADbasic files:
– BTL-Directory: The directory in which the development environ-

ment searches for the system files <*.btl>, which are transferred to
the ADwin system during the boot process (see chapter 3.1.3).

– Include-Directory: The directory in which the compiler searches
for include files <*.inc>, which can be included into the source code
using #INCLUDE instruction (without path).

– Lib-Directory: The directory in which the compiler searches for
library files <*.lib>, which can be included into the source code
using IMPORT instruction (without path).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

48

– Default working directory: The directory in which the develop-
ment environment searches searches for files, if a source code file or
a project is opened.

It is recommended that default directories for BTL, Include and Library be not
changed. To include library and include files from other directories, type the
full or relative path name with the instruction.

ADtools

The ADtools (description see chapter 3.10) can be started from the ADtools
bar. If the appropriate option is active, the tool is displayed in the bar.

3.7.6 Debug Menu

Timing Analyzer Option

When the Timing Analyzer compiler option is activated, additional informa-
tion about the timing characteristics of this process are available after compil-
ing a source code. (For display of information see the Show timing information
Menu Item).
The setting of this compiler option is displayed in the Status Bar, the setting
of a running process in the Process Window.

This option needs approximately 60 clock cycles (when using a T9, T10 or T11
processor) per event and process additionally and therefore slightly affects the
timing characteristics. We recommend that the option should only be activated
to compile one or only some processes and should then be deactivated again.
These option settings of the processes are not saved when quitting ADbasic.

Show timing information Menu Item

The Show timing information menu item opens the Timing Informa-
tion window (with activated Timing Analyzer Option only).

For each of the processes 1…10 the window shows 7 parameters, which
describe the timing characteristics of the processes since the moment it has

The Debug menu offers settings
which help in finding run-time or
symantic errors.

Please note that all settings will only
be active after the next compilation.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

49

been started. More detailed information can be found in chapter 5.3.2 "Check
the Timing Characteristics (Timing Mode)".

All timing information is given in clock cycles of the processor (units see fig. 17
on page 115).

The parameters can only be used with high-priority processes. In an externally
controlled process the values in the lines 4-6 are not useful and are displayed
as 0 (zero).

Fig. 6 – The Timing Analyzer window

All duration values are counted in clock cycles of 25ns. Length describes the
time a process cycle needs (section EVENT:); this processing time can also
be determined as described in chapter 5.1 "Measuring the Processing Time".
Latency is the time between an event signal (external or generated by inter-
nal timer) and the start of the process cycle, shown in the picture below for the
time-controlled Process 1.

The parameters in the window have the following meaning:
– min. Length: The minimum time measured for a process cycle
– max. Length: The maximum time measured for a process cycle
– ∅ Length: Average time of a process cycle.

Prozess 2

Prozess 1

Process 1 delay

Latency > 0Latency = 0

LengthLength

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

50

The average is calculated as mean value from the previous length
values:

After start of a process it takes 7000 cycles until the average time
reaches a valid value.

This parameter shows with min. Length and max. Length how long
and regular the processing time is for a process cycle. Varying proces-
sing times will arise e.g. when large quantities of data are only evalua-
ted after a longer time period or if conditions (IF, CASE) contain
program sections with very different processing times (loops).

– max. Latency: The maximum measured latency of a process cycle;
only available for timer-controlled processes.

A latency emerges from the occurrence of an event signal while a high-
priority process is running. This happens when the processing time of
a process cycle exceeds its Processdelay. With 2 or more high-priority
processes every now and then process cycles do start time-delayed,
except their processdelays are integer multiples of each other.

The sum of all delays should always average 0; this corresponds to
keeping an average frequency. Moreover, the parameter is important
for processes whose process cycles must run at a precisely pre-de-
fined period in time.

– max. (Latency+Length): The maximum sum of the latency and the
processing time of a process cycle; only available for timer-controlled
processes.

To get optimal timing characteristics, this parameter value should be
lower than the value of the Processdelay; if you can fulfill this condition,
the process does not cause latencies for its process cycles (but nev-
ertheless can do for other process cycles).

– count (Length > Delay): A value indicating how often the process-
ing time of a process cycle has exceeded the Processdelay; only avail-
able for time-controlled processes. This value should preferably be
zero.

The higher the value, the more frequently the process has caused a la-
tency for its own process cycles (and perhaps for other processes too).
The operating system is continously trying to make up this delay. The

∅Length 0.999 ∅Length 0.001 Length⋅+⋅=

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

51

amount of exceeded values gives no information about the loss of
event signals.

– Critical timings: describes how often a condition is fulfilled, which
could signify a lost event signal. The value should definitely be zero.

This parameter has a different meaning depending on the type and
amount of processes (see chapter 6.2.5 "Different Operating Modes in
the Operating System", page 119).

Event signals can be lost under the following circumstances:
• in a single time-controlled high-priority process

(also in combination with the externally controlled process)
• in the externally controlled process (also in combination with one or

more time-controlled processes).

In several time-controlled processes event signals cannot be lost; the
following condition will nevertheless be counted. Here the parameter
must be interpreted as a poor timing characteristic, which should be im-
proved in any case.

Loosing event signals means that (since the last start of the process)
fewer process cycles have been executed than event signals occurred,
probably the amount fewer which is indicated. Lost event signals can-
not be compensated by the operating system.

A loss of an event signal is equated to the fulfilment of the condition:
• in time-controlled processes:

max. latency+length > 2 × Processdelay
• in externally controlled processes:

When processing the section EVENT: has just been finished, a new
external event signal is already waiting. Any more event signals
having arrived during this processing time will be lost.

Sometimes it happens that, despite a true condition, no event is lost.
Thus, you play it safe reducing the amount of true conditions as far as
possible.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

52

Debug mode Option

The Debug mode compiler option, when activated, includes additional security
queries into the process during the compilation of a source code (see also
chapter 5.3.1 on page 104).
The setting of this compiler option is displayed in the Status Bar, the setting
of a running process in the Process Window.

Activation of this option increases program execution time as well as the
demand for memory. As a rule this increase has a dimension of approximately
20%, whereas greater values are also possible. Therefore, this option should
only be used during program development.

Fig. 7 – The Debug Errors Window

The window Debug Errors opens when a run-time error occurs in the ADwin
system. The window can be reopened by clicking the Show_Debug_Window
menu option after it is closed.

The operating system corrects run-time errors in a way to obtain a stable state
of operation; this may nevertheless cause unexpected program results. Cer-
tain run-time errors on Pro II modules will stop the process.

The following table shows which errors are displayed and which corrections
are made. The complete list of debug error messages–including those where
no corrections are made–are to be found in the annex on page A-17.

Run-time error Correction

Division by zero The result of a f loat division is
replaced by +3.40282E+38, the
result of a long division is replaced by
+2147483647.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

53

1

For each process only one error is shown (in most cases the error which
occured last), even if the process has generated more run-time errors.

Please note: Using the MemCpy instruction only the access to the destination-
array will be controlled and corrected; an access to undeclared elements of
the source array will not be detected.

SQRT from negative number The square root’s result is replaced
by the value 0.

Data index too large / <1
Array index too large / <1

Access to local or global array ele-
ments which are not declared, with
indices that are too large or too
small.

A too small element index (<1) is
replaced by 1, a too large element
index by the greatest dimensioned
element index.

Fifo index is no fifo

The array with the given index is not
declared as FIFO or not declared at
all.

Instruction is not executed:

FIFO_CLEAR , FIFO_FULL ,
FIFO_EMPTY.

Address of Pro II module is
>15 or <1

The process is stopped.

1. Valid for P2_BURST_INIT, P2_BURST_READ, P2_BURST_WRITE

Run-time error Correction

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

54

3.7.7 Tools Menu

The menu entries ADtools and following start a tools each. Find a short
description in chapter 3.10 on page 68 .

The Tools menu option calls utility pro-
grams.

The Clear Data menu option clears the
memory of the ADwin system, which is used
by a specified DATA array. This is the coun-
terpart to the DIM instruction. All data of the
array will be lost.

In the dialog box, type the data array index to
be cleared, e.g. 3 for Data_3 and confirm.

The Clear Process menu option deletes a
specified process from the memory. Please
note that a process can only be deleted after-
being stopped.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

55

3.7.8 Window Menu

3.7.9 Help Menu

The Help menu calls the online help of the development environment:

The instruction lists refer to the ADwin system, which is set in the Com-
piler Options dialog box on page 40.

Altenatively, you may use the button in the toolbar. With the [F1] key, help
is opened for a dialog box or for the selected keyword.

The About menu entry opens a window that displays the version of the devel-
opment environment and the License key. The license key can be entered
or changed by pressing the Change License button (see also page 9).

Without entereing a valid License key, ADbasic runs in demo mode. Indemo
mode, the use is only allowed for demonstration, test or evaluation purposes.

From the Window menu it is possible to switch
between different source code windows and
arrange them on the monitor.

The Arrange Icons menu reorders mini-
mized source code windows which is useful
after the screen resolution has changed.

At the bottom of the menu, there is a list of open
source codes; by clicking one of these menu
items that source code will become the active
window. The active source code is checked; in
the example at right it is ADbasic1.bas.

– Content: Table of contents
– Index: Index directory
– Instructions by …:

Sorted lists of instructions.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

56

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

57

3.8 Windows

3.8.1 Toolbox

The Toolbox is the window range of the environment to the left, where Project
Window, Parameter Window, and Process Window are displayed.

The toolbox divides into an upper and lower display region, where to the win-
dows can be assigned freely. A hidden window is drawn to the front with a click
on its tab.

To assign a window to the upper or lower region, do as follows:
– Do a right mouse click to the head bar of the window to open the con-

text menu.
– Select whether to dock the window at top or bottom.

– You may dock all windows to the same region. Thus, only one window
can be in front at a time.

The standard setting can be reset via the menu entry View Restore
default layout.

The toolbox can be displayed as movable window or be completely hidden via
the buttons in the head.

3.8.2 Project Window

The project window shows an opened project and the source code and include
files added.

The project window is located in the Toolbox (see page 57).

In the project window the following actions may be executed:
– Add a source code or include file to the project:

Select Add to Project from the source code context menu.
– Add all open files to the project:

Select Add Open Files to Project from the project window context
menu.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

58

– Delete a source code file from the project:
Highlight the file in the project window, then

• press the [DEL] key or
• select Remove from Project from the context menu.

– Open a source code file and make it the active source code:
• Double-click the file or
• Highlight the file in the project window, then select Open from the

context menu (right mouse button).
– Save all open source code files of the project:

Select Save All Files of Project from the context menu.

Fig. 8 – The Project Window with the Context Menu

3.8.3 Parameter Window

The parameter window displays a table showing the values of the global para-
meters Par_1…Par_80 and FPar_1…FPar_80. With the scroll bar at right
you can scroll through the parameters.

The parameter window is located in the Toolbox (see page 57).

When the communication between the computer and ADwin system is active
(icon Enable Cyclic Update in the toolbar), the fields in the table are
enabled and appear with a white background color, and display the values of
the global parameters. The values are continuously read out from the system.
Fields are disabled and appear with a grey background color when the com-
munication is inactive.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

59

Fig. 9 – The parameter window

To change the display of a parameter’s value (Par_1…Par_80) between
decimal and hexadecimal notation (see Par_5 in fig. 9), do a mouse click on
the number of the variable (left of the table field). A click on the column header
changes the display of all parameters Par_1…Par_80 at once.

For use of the Scan Global Variables button see "Displaying used
global variables and arrays" on page 34.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

60

3.8.4 Process Window

The process window shows information about the processes 1…10 on the
ADwin system, when the communication between the computer and the
system is active (icon in the toolbar). Otherwise the fields are grey.

The process window is located in the Toolbox (see page 57). Open the pro-
cess window with a click on the tab Processes.

Fig. 10 – The Process Window

For each process the following information is displayed:
– Process status

• running: process is running.
• stopped: process was stopped.
• ---: process does not exist.

A process can be stopped with button and started again with
button. The buttons of the toolbar have the same function, but they re-
fer to the process related to the active source code.

Process-
delay

red =
high
priority

b lue =
low
priority

Debug mode
active;
red = error

T im ing
mode active

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

61

– process delay (process cycle time); the process delay for the active
source code is displayed in the toolbar, too.

To change the cycle time, type a value into the input field. As soon as
the cursor leaves the input field the value is transferred to the ADwin
system. Please note to not overload the system by small values.

– Process priority; the color of the process number indicates the priority:
• red = high priority
• blue = low priority

The time units and meaning of the process delay are explained in
chapter 6.2.1 "Processdelay", page 115.

– Process runs in debug mode

The icon is displayed if the process runs in debug mode. Find more
about debug mode under Debug mode Option.

The compiler setting debug mode is displayed in the Status Bar.
– Process runs in timing mode

The icon is displayed if the process runs in debug mode. Find more
about debug mode under Timing Analyzer Option (page 48). Timing in-
formation is displayed in the Window Timing Analyzer.

The compiler setting timing mode is displayed in the Status Bar.

3.8.5 Status Bar

The status bar is located at the bottom of the ADbasic program window.

– Left side: Information about the last ADbasic action.
– Middle: The current CPU and memory usage of the ADwin system.

This information is displayed, if the communication between the com-
puter and ADwin system is active.

Last ADbasic
action

CPU and memory usage of the ADwin system Cursor position
Compiler settings

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

62

– Right: The current cursor position in the source code window (line and
column); further compiler settings (debug mode, timing mode, device
no., processor, ADwin hardware).

The displayed information about the CPU/memory usage:

3.9 Info range
The info range is located at the bottom of the main window and encloses the
following windows:
– Info window
– ToDo List
– The window Debug Errors
– Window Timing Analyzer
– Global Variables Window
– Declarations Window

3.9.1 Info window

In the info window the compiler messages concerning the current source code
are displayed:
– Error messages (coloured red)
– Warnings
– Status message after compilation

The window is part of the Info range (see above).

Warnings and error messages are displayed with the place of occurence (line,
file name and path). A double click turns the appropriate code line to red and
the cursor jumps to the line.

The (successful) status message after compiling looks like this:

– Busy: the processor workload in percent, calculated as:
CPU time / (CPU time + idle time).

– PM: free program memory in bytes.

– EM: free extra memory in bytes (T11 only).

– DM: free internal data memory in bytes.

– DX / SX: free external data memory in bytes.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

63

The values be used as hints about the required memory:
– Codesize: Size of the created binary file in bytes; the file will be stored

in the program memory (PM) as process.
– Workspacesize: Required memory size in bytes in the local data

memory (DM), being used for
• local variables and arrays
• internal purpose (2 × 4 byte)

Additional memory will be required in the data memory which be cal-
culated manually:

• Each global array requires about fourty byte in the local data
memory (internal purpose).

• Each element of a global array requires 4 byte (in the external data
memory; if the array be declared AT DM_LOCAL, the elements are
stored in the local data memory).

– Stacksize: Internal stack size, which is used for libraries.

The memory size required in the external data memory (DX) will not be dis-
played.

3.9.2 ToDo List

The ToDo window serves as a simple ToDo list: lines from the current source
code are shown where the text „ToDo:“ is contained as a comment. By use
of such commenting lines not yet completed tasks can be flagged in the
source code and clearly arranged in the ToDo window.

If a task is completed, just delete the comment line.

The window is part of the Info range (see page 62).

Compile: C:\path\ADbasic1_Pr1.bas
ADbasicCompiler Version 5.00.01 04.02.2008
Process compiled. Codesize: 504 Workspacesize: 8 Stacksize: 16 Byte
0 Errors, 0 Warnings

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

64

A double click on a ToDo entry positions the cursor in the appropriate line of
the source code.

3.9.3 Timing Analyzer Window

The window Timing Analyzer displays 7 parameters describing the timing
characteristics of the processes 1…10 since the moment of the previous start.
More detailed information can be found in chapter 5.3.2 "Check the Timing
Characteristics (Timing Mode)".

The window is part of the Info range (see page 62).

All timing information is given in clock cycles of the processor (units see fig. 17
on page 115).

The parameters can only be used with high-priority processes. In an externally
controlled process the values in the lines 4-6 are not useful and are displayed
as 0 (zero).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

65

Fig. 11 – The Timing Analyzer window

All duration values are counted in clock cycles of 25ns. Length describes the
time a process cycle needs (section EVENT:); this processing time can also
be determined as described in chapter 5.1 "Measuring the Processing Time".
Latency is the time between an event signal (external or generated by inter-
nal timer) and the start of the process cycle, shown in the picture below for the
time-controlled Process 1.

The parameters in the window have the following meaning:
– min. Length: The minimum time measured for a process cycle
– max. Length: The maximum time measured for a process cycle

– ∅ Length: Average time of a process cycle.

The average is calculated as mean value from the previous length
values:

After start of a process it takes 7000 cycles until the average time
reaches a valid value.

Prozess 2

Prozess 1

Process 1 delay

Latency > 0Latency = 0

LengthLength

∅Length 0.999 ∅Length 0.001 Length⋅+⋅=

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

66

This parameter shows with min. Length and max. Length how long
and regular the processing time is for a process cycle. Varying proces-
sing times will arise e.g. when large quantities of data are only evalua-
ted after a longer time period or if conditions (IF, CASE) contain
program sections with very different processing times (loops).

– max. Latency: The maximum measured latency of a process cycle;
only available for timer-controlled processes.

A latency emerges from the occurrence of an event signal while a high-
priority process is running. This happens when the processing time of
a process cycle exceeds its Processdelay. With 2 or more high-priority
processes every now and then process cycles do start time-delayed,
except their processdelays are integer multiples of each other.

The sum of all delays should always average 0; this corresponds to
keeping an average frequency. Moreover, the parameter is important
for processes whose process cycles must run at a precisely pre-de-
fined period in time.

– max. (Latency+Length): The maximum sum of the latency and the
processing time of a process cycle; only available for timer-controlled
processes.

To get optimal timing characteristics, this parameter value should be
lower than the value of the Processdelay; if you can fulfill this condition,
the process does not cause latencies for its process cycles (but nev-
ertheless can do for other process cycles).

– count (Length > Delay): A value indicating how often the process-
ing time of a process cycle has exceeded the Processdelay; only avail-
able for time-controlled processes. This value should preferably be
zero.

The higher the value, the more frequently the process has caused a la-
tency for its own process cycles (and perhaps for other processes too).
The operating system is continously trying to make up this delay. The
amount of exceeded values gives no information about the loss of
event signals.

– Critical timings: describes how often a condition is fulfilled, which
could signify a lost event signal. The value should definitely be zero.

This parameter has a different meaning depending on the type and
amount of processes (see chapter 6.2.5 "Different Operating Modes in
the Operating System", page 119).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

67

Event signals can be lost under the following circumstances:
• in a single time-controlled high-priority process

(also in combination with the externally controlled process)
• in the externally controlled process (also in combination with one or

more time-controlled processes).

In several time-controlled processes event signals cannot be lost; the
following condition will nevertheless be counted. Here the parameter
must be interpreted as a poor timing characteristic, which should be im-
proved in any case.

Loosing event signals means that (since the last start of the process)
fewer process cycles have been executed than event signals occurred,
probably the amount fewer which is indicated. Lost event signals can-
not be compensated by the operating system.

A loss of an event signal is equated to the fulfilment of the condition:
• in time-controlled processes:

max. latency+length > 2 × Processdelay
• in externally controlled processes:

When processing the section EVENT: has just been finished, a new
external event signal is already waiting. Any more event signals
having arrived during this processing time will be lost.

Sometimes it happens that, despite a true condition, no event is lost.
Thus, you play it safe reducing the amount of true conditions as far as
possible.

3.9.4 Global Variables Window

The window Global Variables displays which global variables (Par_1 …
Par_80, FPar_1 … FPar_80) and arrays (Data_1 … Data_200) are used in a
source code or a project.

To start or update the display click the button Scan Global Variables
in the Parameter Window (see Displaying used global variables and arrays,
page 34).

The window is part of the Info range (see page 62).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

68

The window columns can be sorted with a click on the column header.
– the name of the scanned file
– the line number where the variable is called or used.

If the comment contains a file name, the line number refers to this file,
else to the scanned file.

– a comment, if
• the variable is used more than once in the line
• the variable is used only indirectly.

This case happens if e.g. a function of an include or a library file
uses a global variable. The function call in the source code thus
uses the global variable indirectly, even though it does not show up
in the calling line.

If you change the source code the window is not updated automatically. To do
so, use the button Scan Global Variables in the parameter window.

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

69

3.9.5 Declarations Window

The Declarations window displays all declarations, include and library files
related to a source code file. For update of the display click the Update button.

Declarations of other source code files will not be displayed–even if combined
within a project.

The window is part of the Info range (see page 62).

The declarations are displayed sorted under tabs, representing the declara-
tion sources:
– [file].bas: Declarations within the source file: local variables,

arrays, instructions (SUB, FUNCTION) and symbolic names
(#DEFINE).

– System: System variables and instructions being implemented in
ADbasic, if they fit to the current compiler settings.

Global variables PAR and FPAR are not displayed here. Please note the
Global Variables Window (page 67) and the function "Displaying used
global variables and arrays" (page 34).

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

70

– ADwin-Gold, ADwin-light-16: Instructions for hardware access,
which are implemented in ADbasic und and fit to the current compiler
settings.

– [file].inc: Variables and instructions being declared in this include
file. Such tabs only show up if there are #INCLUDE lines in the source
code file.

– [file].lib: Variables and instructions being declared in this library
file. Such tabs only show up if there are IMPORT lines in the source
code file.

– All: All valid declarations of the above sources.

The window columns can be sorted with a click on the column header. With
active option Show Groups, declarations are grouped by type.

If you change the source code the window is not updated automatically. To do
so, use the Update button.

The display of declarations is only available, when the option Parse Decla-
rations under Editor - General (see page 45) is active.

3.10 ADtools
ADtools is a collection of simple utility programs, with which you can display
and change the global variables (Par, FPar) and arrays (Data) of ADwin
systems. These programs aid the development of processes for the ADwin
system by: displaying the status or values, changing them with practical tools,
displaying simple measurement sequences in a graph.

Start one of the ADtools simply from the vertical bar at the right.

Each ADtool is its own independent Windows program; each can be started
several times, allowing for comprehensive views of parameters of interest on
the computer monitor. Once an appropriate screen layout is selected, the
whole configuration may be saved and used later.

The following ADtools are available:

Development Environment

ADbasic 5.00, Manual March 2010

ADwin

71

All further information about the help programs can be found in the online help
of the used ADtools program.

TDigit Global variable and array values can be displayed and adjusted.

TGraph Global array contents can be displayed in a graph.

TButton
Button control for booting the ADwin system, loading, starting or
stopping a process, or setting a parameter value.

TLed
Displays the value of a variable by a simulated LED. The LED can
be off, on, blinking slowly or flickering rapidly depending on the
value. An audible alarm can also be set with this tool..

TMeter Global variable and array values can be viewed as an analog dial.

TPoti
Global variable and array values can be adjusted with a potenti-
ometer-style control.

TProcess
Start/stop, adjust timing, and display information about the pro-
cesses loaded on the ADwin system.

TPar_FPar All or selected global variables can be displayed or entered.

TFIFO Save FIFO array data into a file..

TBin
Up to five PAR variables can be displayed in binary (as DIL
switch) and in hexadecimal notation, and adjusted.

TString Save and/or load a configuration to/from several ADtools.

ADtools saves and loads a user-defined configuration of several ADtools.

TGraphTiCo displays contents of global arrays of a TiCo processor in a graph.

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

72

4 Programming Processes
This chapter provides information about how to build and structure an ADbasic
program and which variables can be used.

4.1 Program Design
An ADbasic program is an ASCII text file created with the editor of the develop-
ment environment, using an extended Basic syntax. The compiler translates
this source code into an executable process for a specific ADwin system.
jThe source code consists of any number of command lines; each containing
an instruction or assignment (exception see : Colon), with up to 255 (ASCII-)
characters in one line.
ADbasic accepts instructions and variable names in lower and upper case let-
ters (for more clarity all examples use unique spelling).
A program consists of up to 4 sections, which take on different tasks when
executed on the ADwin system. fig. 10 outlines the ideal steps for an ADbasic
program.
Each program must at a minimum, have an EVENT:section.
Optionally functions and subroutines can be defined, as well as libraries and
"include"-files be included.

Program Design

ADbasic 5.00, Manual March 2010

ADwin

73

Fig. 12 – Design of an ADbasic program

LOWINIT:

Declarations:

INIT:

FINISH:

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Library
Functions and
Subroutines

#DEFINE

#INCLUDE

IMPORT

<ADbasic.BAS>

<ADbasic.INC>

<ADbasic.LI?>

Macro Functions
and Subroutines

DIM

EVENT:

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

74

4.1.1 The Program Sections
Each of the program sections (see fig. 12) start with a keyword, as described
below.

– LOWINIT: can only be used within high-priority processes.

When the process starts, this section is executed only once and is used
for initialization, for instance of variables or data I/O lines. It is always
executed prior to the execution of the INIT: section (if there is one)
and at low-priority, level 1.

This section is ideal for extensive initialization sequences, because it
can be interrupted, due to its low-priority.

– INIT: is similar to the LOWINIT: section, as it is executed only once
at the start of the process. However, it will be executed with the priority
that has been assigned for the process (menu item Options /
Process).

This section cannot be interrupted when configured as high-priority
and should therefore be rather short.

– EVENT: is the main program section, which is (characteristically) cal-
led in regular time intervals until it is stopped. This section is triggered
by a cyclic timer event or an external event, depending on the configu-
ration..

– FINISH: is executed only once after a process has been stopped; it
is, therefore, the counterpart to the initialization. This section is always
executed at low-priority, level 1.

The LOWINIT:, INIT: and FINISH: sections are optional, while the EVENT:
section is not and must be included in your program.

4.1.2 User defined instructions and variables

Symbolic names
The instruction #DEFINE defines symbolic names (see page 153). Group all
of these definitions at the beginning of the file and before the start of the pro-
gram sections.
Symbolic names are often used to give a name to constants, global variables
and global arrays, but also to expressions.

Program Design

ADbasic 5.00, Manual March 2010

ADwin

75

Arrays and Local Variables
In an ADbasic program the local variables and all arrays must be declared with
DIM before they can be used (see page 155). The global variables Par_n and
FPar_n are already pre-defined and do not need to be declared. Variables
and arrays have no defined contents after being declared, therefore they
should be initialized.
Within the process all variables and arrays are available in all program sec-
tions. The global variables and arrays may also be accessed from other pro-
cesses and from the PC, in order to exchange data.

Macros
A macro function FUNCTION … ENDFUNCTION or subroutine SUB … ENDSUB
call inserts the macro into the program text where it is being used (see also
chapter 4.5.1 on page 96). However, the macro definition cannot be done
within the program sections. (see fig. 12. on page 73).

Libraries
Libraries must be included before the program sections that use them. Library
functions LIB_FUNCTION … LIB_ENDFUNCTION and subroutines LIB_SUB
… LIB_ENDSUB, when used more than once within a program, require less
memory than similar macro functions or subroutines described above (see
also chapter 4.5.3 on page 97).

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

76

4.2 Variables and Arrays

4.2.1 Overview

Variables are normally stored in the internal memory DM and arrays in the
external memory DX (memory map, see chapter 4.3.1), if not determined
explicitely.
All data types have a length of 32-bit.

4.2.2 Data Structures
In ADbasic there are two main types of data structures:

Data structure Name Data type Notes

Global variables and arrays
Variable (Scalar) Par_1…Par_80 LONG

Pre-defined,
not declarable,
memory area DM

FPar_1…FPar_80 FLOAT

System variable PROCESSDELAY LONG

PROCESS_ERROR LONG

PROZESSN_RUNNING LONG

One- or two-
dimensional
array (vector)

Data_1[][]…
Data_200[][]

LONG,
FLOAT,
STRING,
FIFO

Name DATA_ not
changeable, only dec-
laration of array num-
ber and dimension.

Local variables and arrays
Variable
(Scalar) selectable LONG, FLOAT must be declared

One-dimensional
array (vector) selectable

LONG,
FLOAT,
STRING

must be declared

– variables (scalars)

Each variable can store one value only.

VAR

Variables and Arrays

ADbasic 5.00, Manual March 2010

ADwin

77

The maximum number of variables and array size are limited only by the
memory size of the ADwin system.
The compiler differentiates

– Global Variables (Parameters) variables and Global Arrays (see
chapter 4.2.5 and chapter 4.2.6):

All processes as well as computer applications can access global va-
riables, for instance to exchange data.

System variables are global variables (see page 82).

– Local Variables and Arrays (see page 82):

Local variables are available only in the process, function, or subrou-
tine where they have been declared.

Variables and arrays are declared with the DIM instruction; this determines the
data type, as well as the necessary memory place, and allocates it to the vari-
able name.
For easier programming, global variables Par_1 … Par_80 and FPar_1 …
FPar_80 are already pre-defined; thus, global variables don’t have to (and
cannot) be declared.
The compiler recognizes the declaration of global arrays by the names
Data_n, where "DATA_" is a fixed text and "n" is the array index number
(1...200) specified.
After declaration, variables and array elements have an undefined value and
thus should be initialized with a useful value (e.g. zero). Exception: After
power-up of the ADwin system the global variables are automatically initiali-
zed with zero.

4.2.3 Data Types
A data type must be indicated when declaring variables and arrays.

– arrays, one- or two-dimensional..

An array consists of any user-defined number of array el-
ements, each storing one value.

One-dimensional global arrays Data_n may also be used
as FIFO (a ring buffer which works according to the prin-
ciple: First in, first out, see chapter 4.3.4 on page 87).

ARRAY

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

78

The compiler processes the following data types:

– : 32-bit integer values with the ranges:

−2147483648 … +2147483647 = −231 … +2-31-1.

– until T10: Floating-point values (32 bit) with the ranges:

−3.402823 ⋅ 10+38 … −1.175494 ⋅ 10-38 (negative values, 32 bit)

+1.175494 ⋅ 10-38 … +3.402823 ⋅ 10+38 (positive values, 32 bit)

The value range is not equivalent to the IEEE floating-point format.

– since T11: Floating-point values (40 bit) with the ranges:

−3.402823668 ⋅10+38 … −1.175494351 ⋅10-38 (negative values, 40bit)

+1.175494351 ⋅10-38 … +3.402823669 ⋅10+38 (positive values, 40 bit)

The value range is not equivalent to the IEEE floating-point format.

Accuracy of 40 bit is solely restricted to:
• Calculations inside the ADwin system.
• Evaluation of constants by the compiler.

The 40 bit accuracy may not be used or displayed on the PC since data
will only be transmitted – for reasons of speed – as 32 bit values be-
tween PC and ADwin system.

In memory, a 40 bit float variable allocates 64 bit.

– : ASCII character strings, in which each character is stored as
a single array element (for details see chapter 4.3.5 on page 88). A sin-
gle character corresponds to an integer 8-bit value in the range 0 …
255.

The obsolete data types SHORT and INTEGER–used with processors before
T9–were replaced by data type LONG. For reasons of compatibility the com-
patibilität accepts these data types furthermore but automatically replaces
them by LONG.
When combining integer and floating-point values, a type conversion will
occur. Under certain circumstances this may cause calculation results dis-
crepancies from expected results. More about this is found in section "Type
Conversion" on page 94.
The next section illustrates, in which notation a numeral value can be entered.

LONG

FLOAT

FLOAT

STRING

Variables and Arrays

ADbasic 5.00, Manual March 2010

ADwin

79

4.2.4 Entering Numerical Values
You can use 4 different notations in order to enter numerical values. The fol-
lowing examples assign the (decimal) value 930 to a variable x.
For floating-point values the dot "." is used as decimal separator (English
notation).

1. Decimal notation:

Please note the difference: The number 930 has the LONG data type, while the
number 930.0 has the FLOAT data type. This is important when you use both
data types in one expression (see chapter 4.4.2).

2. Expontential notation:

Here 9.3E2 stands for 9.3 × 102, where "E" is followed by the expo-
nent to the basis of 10 (max. 2 decimal places).

3. Binary notation:

4. Hexadecimal notation (an h is added):

If the hexadecimal value begins with a letter (A-F), a leading zero (0)
must be added: Instead of "F6h" the value must be written "0F6h",
otherwise the compiler takes the value as the name of a local variable.

4.2.5 Global Variables (Parameters)
All running processes and the computer can access global variables and
arrays; therefore they are ideal for data exchange between the processes or
between the processes and the computer (see also chapter 6.3.1 "Data
Exchange between Processes"). 80 integer variables, 80 floating-point varia-
bles as well as up to 200 arrays of the LONG or FLOAT data type are available.
All variables and array elements have a length of 32-bit.
The System Variables, also globally available, are described on page 82.

x = 930 LONG

x = 930.0 FLOAT

x = 93E1 LONG

x = 9.3E2 FLOAT

x = 1110100010b LONG

x = 3A2h LONG

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

80

The global variables can be used anywhere in a program without being decla-
red. Since the variables have an undefined value at program start they should
be initialized with a useful value (e.g. zero). Exception: After power-up of the
ADwin system the global variables are automatically initialized with zero.
The global variables are also termed parameters and have the names:

– Par_1, Par_2, …, Par_80 with the LONG data type for 32-bit integer
values.

– FPar_1, FPar_2, …, FPar_80 with the FLOAT data type for floating-
point values.

Example
Par_5 = 700 'Parameter 5 contains the value 700.
PAR_72 = ADC(1) 'The voltage at the analog input 1

'is measured and stored into
'parameter 72.

Contrary to other variables, global variables, Par_n and FPar_n, must not be
declared because they are pre-defined and are already known to the compiler.

4.2.6 Global Arrays
The global arrays enable the exchange of data between the processes on the
ADwin system or the computer (see also chapter 6.3.1 "Data Exchange bet-
ween Processes"). Up to 200 arrays of the LONG or FLOAT data type are
available.
Since size and data type are selectable, global arrays must be declared at the
beginning of a program and preferably be initialized, too. (Else the array ele-
ments have undefined values).
The compiler recognizes the declaration of global variables by their names
Data_n, where "DATA_" is a fixed text and "n" is the array number (1…200).
The names for DATA arrays are:
Data_1, Data_2, …, Data_200.

Other array numbers are not allowed. However, the declaration of non-
sequential array numbers is permissible, for instance Data_5 without Data_1
… Data_4 is allowed. In your program the compiler differentiates the arrays
by their numbers.

Variables and Arrays

ADbasic 5.00, Manual March 2010

ADwin

81

Example
REM Declare the array 5 with 20000 elements of the type LONG.
DIM Data_5[20000] AS LONG
REM Declare the array 3 with 7×5 elements of the type FLOAT.
DIM Data_3[7][5] AS FLOAT

There is more information about 2-dimensional arrays in chapter 4.3.3 on
page 85.
The maximum size of the array depends on the memory size. For instance on
an ADwin system with 16MiB memory an array of up to 4 million elements of
the LONG type may be declared.
After the array has been declared, each individual element can be accessed.
The first element of an array has the index 1.
Do not assign a value to the element 0 of an array, for instance with
Data_1[0] = … .

Examples
Rem The value of the 200th element from array 5 is assigned
Rem to the global integer variable PAR_1.
Par_1 = Data_5[200]

Rem In this program line the 345th element from the array
Rem DATA_5 gets the value 4000.
Data_5[345] = 4000

Rem This instruction assigns the value 300.1 to the 1st element
Rem of the 2 dimensional array DATA_3.
Data_3[1][1] = 300.1

A variable can be used as an index number of an array element:
'Here, too, as in the example above, the value 4000 is
'assigned to the 345th element of the array DATA_5.
number1 = 345
Data_5[number1] = 4000

However, a variable cannot be used as number of an array. The following
instruction results in an error message of the ADbasic compiler:

num = 2
Data_num[300] = 20 'WRONG !!
Data_2[300] = 20 'CORRECT

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

82

The compiler determines Data_num to be the name of a local array,
which (probably) has not been declared and therefore is not available.
Instead, use the notation Data_2.

4.2.7 System Variables
In order to get information about the status of the ADwin system the following
system variables are available. These are global variables that can be acces-
sed by all processes and by the computer. More information can be found in
the description of the instructions.
PROZESSN_RUNNING

Returns the status of the process n (with n = 1…10): the process is run-
ning, just being stopped or already stopped (see page 224). The varia-
ble can only be read.

PROCESS_ERROR

Returns the number of the previous error of process n, if debug mode
is active (with n = 1…16, see page 223). The variable can only be read.

PROCESSDELAY

The nominal time interval, in which time-controlled processes are
called by the counter, is the processdelay (cycle time). With the system
variable PROCESSDELAY you query and set this time, measured in
clock cycles of the counter (see chapter 6.2.1 on page 115).

You read and write into the variable PROCESSDELAY in the sections
INIT: and EVENT: only. But writing into the variable is only allowed
once per section, because otherwise the status of the ADwin system
may become instable.

Writing into this variable in the section EVENT: should just be made at
the beginning of this section, because changing the variable will have
an immediate effect on calling the next process cycle. Otherwise the
precise processing of the process cycles in a certain time interval can
become instable.

Please note that the workload of the processor is at least less than
90 percent, and must not exceed 100 percent.

4.2.8 Local Variables and Arrays
All local variables and arrays, needed for a process must be declared before
the start of the first section of the ADbasic program and preferably be initial-
ized, too. (Else the variables have undefined values).

Variables and Arrays – Details

ADbasic 5.00, Manual March 2010

ADwin

83

Variable names can consist of any alphanumeric characters (a-z, A-Z, or 0-9)
or an undersore ("_"). Special characters like german umlauts (Ä, Ö, Ü) are not
allowed and there is no case sensitivity. The length of variable names is only
limited by the maximum line length (255 characters).
Variables (scalars) can be defined as either integer values (type LONG) or floa-
ting-point values (type FLOAT), and each are 32 bits long.

Example
DIM value AS LONG 'Defines the variable 'value'

'with the data type LONG
DIM value1, value2 AS FLOAT 'Defines the variables value1

'and value2 with the data type FLOAT

Variables may also be declared as a one-dimensional array, allowing the user
to generate and/or process an array of variables. The number of elements to
dimension in an array is put into square brackets after the array name.

Example
DIM value[100] AS FLOAT'Defines an array with the length

'100, with the name 'value',
'and the data type FLOAT

The first element of an array has the index 1, in the example: value[1]. The
element index 0 must not be accessed at all.

4.3 Variables and Arrays – Details

4.3.1 Variables and Arrays in the Data Memory
The user can explicitly determine which memory area, internal or external, to
store arrays and local variables (see below). This allocation is made, in the
source code, when the variable is declared using the DIM statement using the
additions AT DM_LOCAL or AT DRAM_EXTERN. With processor T11, an addi-
tional memory area is available via AT EM_LOCAL.
Without the use of these allocation statements, all variables are stored in the
internal memory DM and all arrays in the external memory DX.
It is recommended that the internal memory be used for variables and (small)
arrays for fast access. The slower, external memoryis more suitable for
arrays, due to its size.
The fig. 13 shows examples of declarations, in order to store variables and
arrays in the different memory areas.

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

84

Fig. 13 – Allocation of the Memory Area with Declarations

The global variables Par_1…Par_80 and FPar_1…FPar_80 are pre-defi-
ned in the internal memory (DM), therefore they cannot be re-declared in the
external memory (DX).

4.3.2 Memory Areas
The processor of the ADwin system uses a fast internal memory (SRAM)
anda huge external memory (SDRAM).
Half of internal memory is available as program memory PM and as data
memory DM. Processor T11 has an additional internal memory EM, which
may be used either as program or as data memory.

Variable /
Array

Memory Area Source Code Declaration

Local
Variable

Internal (DM) DIM var AS <VARTYPE>
or
DIM var AS … AT DM_LOCAL

Addit. (EM) DIM var AS … AT EM_LOCAL

External (DX) DIM var AS … AT DRAM_EXTERN

Array Internal (DM) DIM array[5] AS … AT DM_LOCAL

Addit. (EM) DIM array[5] AS … AT EM_LOCAL

(global/ local) External (DX) DIM array[5] AS …
or
DIM array[5] AS … AT DRAM_EXTERN

Variables and Arrays – Details

ADbasic 5.00, Manual March 2010

ADwin

85

– Program memory (PM):
Program memory occupies half of the internal SRAM and contains the
operating system and processes.

– Internal data memory (DM)
The internal data memory occupies half of the internal SRAM for stor-
ing the global and local variables.

– Additional memory (EM)

Additional internal memory EM is available with processor T11 only.
Additional memory can be used as data memory or program memory.

– External data memory (DX)
The external data memory covers the external SDRAM and stores the
global and local arrays.

On T11, external memory can store processes of up to one megabyte
size.

Data in the internal memory (DM) can be accessed faster than data in the
external memory (DX) by approximately a factor of five.
Memory size (SRAM, SDRAM) is an ordering option and cannot be upgraded.
The size of memory areas is the only limiting factor to the size of the processes
and the number of declared variables and arrays (indirectly to the size of
source files, too). In the status line of the development environment, the
amount of available memory of PM, DM, EM and DX, is displayed in bytes.

4.3.3 2-dimensional Arrays
Global arrays Data_n may be declared with 1 or 2 dimensions. The basic
array features are described in chapter 4.2.6 "Global Arrays".

DX:PM:

EM:

DM:

internal memory
(SRAM)

external memory
(SDRAM)

T11 only

processes and
operat. system

Processes
or data

Data (arrays)
Processes (T11 only)

Data
(variables)

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

86

2-dimensional notation may simplify a problem’s solution (compared to 1-
dimensional arrays). At the same time it will slow down data access and
require additional program memory.
The loss of access speed and the need of additional memory will increase with
each access to the 2-dimensional arrays by the program.
The following cases require to access the data of a 2-dimensional array as if
it were declared 1-dimensional:

– On the PC, if the data of a 2D-array is transferred to or from an ADwin
system.

The other way round, data of a 1D-array on the PC may be transferred
to an ADwin system, even though the destination array is declared 2-
dimensional in ADbasic.

– Inside of a library module (LIB_SUB, LIB_FUNCTION) which receives
a 2D-array as an argument.

With this kind of data access the order of data in the memory becomes impor-
tant. As an example a 2D-array shall be declared as

DIM Data_1[3][2] AS FLOAT

The 3×2 array elements will be stored sequentially in the data memory. The
following table shows which element index be used for the 1D-access to the
example array.

Thus, an element Data_1[3][1] used in the main program had to be accessed
e.g. in a library module as fifth element of the passed array:

REM use in main program
Data_1[3][1] = 17
setpar1(Data_1) 'sets PAR_1 = 17

REM use in library module
LIB_SUB setpar1(BYREF array[] AS LONG)
Par_1 = array[5] 'corresponds to DATA_1[3][1]

LIB_ENDSUB

Please note: This kind of access is permissible only in the two cases men-
tioned above. In any other case the 2-dimensional notation is needed.
Generally, this is the mapping of 2D-elements to 1D-elements:

array index 2D [1][1] [1][2] [2][1] [2][2] [3][1] [3][2]

array index 1D [1] [2] [3] [4] [5] [6]

memory address n n+1 n+2 n+3 n+4 n+5

Variables and Arrays – Details

ADbasic 5.00, Manual March 2010

ADwin

87

where S is the 2nd dimension of Data_n in the declaration. In the example
above there is s=2.

4.3.4 The Data Structure FIFO
For applications requiring a large quantity of data to be transferred conti-
nously, it is recommended using a Data_n global array with the FIFO data
structure: a "First In, First Out" ring buffer.
The data structure RINGBUFFER of the TiCo processor is quite different from
a FIFO. TiCo ringbuffer is described in the TiCoBasic manual.
In a ring buffer data is handled in a special way; like a queue where data is
appended to the end of the queue and retrieved from the beginning of the
queue. Unlike a "normal" array, data in the array is not accessed by its element
number, but by the first or the last element of the array (via a data pointer).
Consequently, data elements are read out in the same order as they were writ-
ten into the array (= First In, First Out).
Only one-dimensional global arrays (Data_n) can be declared as FIFO
arrays; possible data types are LONG or FLOAT.

Example
DIM Data_5[1003] AS LONG AS FIFO

This instruction declares the global array with the number 5 as FIFO
ring buffer with 1003 elements of the type LONG. Please note the spe-
cial size of a FIFO with the T11 processor (see FIFO).

Please note: A FIFO array cannot be accessed as "normal" array in the source
code
Since a FIFO array has a finite number of elements (which is declared), the
chain of used and unused array elements form a ring, the ring buffer. The data
pointers to the first and last used array element are managed automatically
when a new value is assigned to the array or when a value is read out.
After the declaration of a FIFO array the pointer should be initialized with the
FIFO_CLEAR instruction.
From the ring structure of the FIFO array it is possible for the head of the data
chain to "overtake" the data end. This can only occur when data is written
faster into the FIFO than it is being read out. Subsequently, the earlier stored
data will be overwritten and lost.
A certain FIFO array can be accessed by indicating its array name (with the
corresponding array number).

DATA_n i[] j[] = ˆ DATA_n s i 1–() j+⋅[]

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

88

Example
DIM Data_5[1003] AS LONG AS FIFO
Data_5 = 95 'Writes the value 95 into the

'DATA_5 array which is declared as FIFO
Par_7 = Data_5 'Reads a value from the FIFO and

'stores it in the global variable
'PAR_7

To ensure that the FIFO is not full, the FIFO_EMPTY function should be used
before writing into it. Similarly, the FIFO_FULL function should be used to
check if there are values which have not yet been read, before reading from
the FIFO.

Example
DIM free,used,value1 AS LONG
DIM Data_1[1003] AS LONG AS FIFO
REM Are there still elements which are not empty?
free = FIFO_EMPTY(1)
IF (free > 0) THEN
Data_1 = value1

ENDIF
REM Are there still elements, which haven‘t been read?
used = FIFO_FULL(1)
IF (used > 0) THEN
Par_7 = Data_1

ENDIF

4.3.5 Strings
Control characters and texts from other process monitoring devices can be
transferred, converted and processed by the ADwin system e.g. via an RS-
232 interface.
The following instructions are available for string processing:

ASC Get ASCII number of a character

CHR Get character from an ASCII number

FLOTOSTR Convert a float value into a string

LNGTOSTR Convert a long value into a string

STRCOMP Compare 2 strings to be equal

STRLEFT Get leftbound substring from a string

STRLEN Get length of a string

Variables and Arrays – Details

ADbasic 5.00, Manual March 2010

ADwin

89

For most string instructions the library file <STRING.LI*> must be imported
(where * indicates the processor type: 9 for T9, A for T10, B for T11). The
library file is found in the library directory (default: <C:\ADwin\ADbasic\
LIB>) after the installation.
A string variable has a structure similar to an array, in which each array ele-
ment contains one character. The dimensioning of a string for 5 characters is
as follows:
IMPORT String.LI9
DIM text[5] AS STRING

This dimensioning reserves an array for the string in the memory, which is
structured as follows:

Each element requires 4 bytes of memory. The first and last elements of the
string are automatically reserved by the ADbasic compiler. Do not use ele-
ment number 0, here text[0].
After dimensioning the elements are not initialized. Values must be assigned
to a string before the string can be read from or processed.

Normal Assignment
Values are assigned to string variables by placing the string’s actual text into
quotation marks (") and setting it equal to the string variable. ADbasic stores
the corresponding ASCII numbers for each character in the memory (see
ASCII table in the Appendix).

STRMID Get substring from a string

STRRIGHT Get rightbound substring from a string

VALF Convert a string into a float value

VALI Convert a string into a long value

+ String Addition Operator to concatenate strings

text[1] Length of the string in characters (5)

text[2] Character 1 of the string

text[3] Character 2 of the string

text[4] Character 3 of the string

text[5] Character 4 of the string

text[6] Character 5 of the string

text[7] The end of string character, terminating zero (00h)

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

90

Example
text = "HELLO"

Only characters with the ASCII values between 20h…7Fh (displayable cha-
racters in the normal ASCII character set), should be assigned using quotation
marks, except the following characters which are assigned using the escape
sequence:

– single quote ('): \x27

– double quote ("): \x22

– backslash (\): \x5C

Character Assignment via Escape Sequence
The escape sequence is used to include numerical values or control charac-
ters into a string. The each escape sequence transfers a single ASCII value
to the ADbasic compiler, which stores it in memory without any changes.
The escape sequence is indicated as part of a string inside quotation marks
with the notation \xhh, where hh is the ASCII value to be transferred, written
in hexadecimal notation. Each escape sequences must have exactly 4 cha-
racters.

Example
text = "\x48\x45\x4C\x4C\x4F"

The memory contents is the same as the one given in the previous ex-
ample.

Element
Index

Memory
Contents

Meaning

text[1] 05h Length of the string in characters (5)

text[2] 48h ASCII value for "H"

text[3] 45h ASCII value for "E"

text[4] 4Ch ASCII value for "L"

text[5] 4Ch ASCII value for "L"

text[6] 4Fh ASCII value for "O"

text[7] 00h End-of-string character

Variables and Arrays – Details

ADbasic 5.00, Manual March 2010

ADwin

91

The escape sequence is necessary for assigning characters that are not dis-
played (such as line feed, carriage return, etc.). The range of values using the
escape sequence is from 00h to FFh.
In addition to the notation \xhh there are also special escape sequences for
frequently used (control) characters:

It is also possible to combine the notations described earlier when assigning
values to a string variable.

Example
text = "HE\x4C\x4CO"

The memory content is the same as the one given in the previous ex-
amples.

The end-of-string character should not be inserted into a string (example:
text = "HE\x00LLO"). The ADbasic compiler will properly assign each cha-
racter to the string, but errors will most likely occur when the string is proces-
sed further on.

String Assignments that are NOT Recommended
Unfortunately, it is possible to insert characters with ASCII values 00h…1Fh
or 80h…0FFh on various ways, for instance typing [?] or the German cha-
racters [ß] and [Ö], using "copy and paste" or the key sequence
[ALT]+number. We explicitly do recommended to use Character Assignment
via Escape Sequence!
The compiler is able to process such characters. However, these characters
may either have no unique ASCII value (because they are country-specific),
or they may cause unwanted actions (carriage return, etc.) and program
errors.
It is recommend that any control or special characters inserted into a string
only be done using the escape sequence.

Sequence ASCII
Value

Meaning

\\ 5C Backslash (\)

\t 09 Tab (TAB)

\n 0A Line Feed (LF)

\r 0D Carriage Return (CR)

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

92

4.4 Expressions

4.4.1 Evaluation of Operators
An expression is what is assigned to a variable or transferred as an argument
of an instruction. It consists of any possible combination of:

– simple data: constant, variable or array element

– operators being used for arguments.
For the evaluation of an expression, it is important to understand the order in
which the operators are used. The operators are divided into categories,
which are resolved according to priorities: A category of higher priority is pro-
cessed before a category of lower priority (see fig. 13).
Please note, that automatic Type Conversion may in some cases influence
the evaluation of an expression (see page 94), too.

Example
var = Par_1 + Par_2 * Par_1^3 / 4

corresponds to
var = Par_1 + (Par_2 * (Par_1^3) /4)

Operator Category
" " Delimiter of character strings

ADbasic keyword Instruction, function, variable, etc.

= Assignment

() Parentheses

- Negation of a constant

^ Power

* / Multiplication / Division operators

+ -
And Or XOr

Arithmetic operators
Binary operators

< > = Comparison operators

And Or Boolean operators

Fig. 14 – Priorities of Operator Categories
(Top = highest priority)

Expressions

ADbasic 5.00, Manual March 2010

ADwin

93

If 2 or more operators, appearing in the same line, have the same priority (or
if there are the same operators), the compiler processes them in the order they
appear, from left to right.
Using a negative sign with variables, may return unexpected results, in some
cases, and can be avoided by using parentheses.

Example
var = 1/-x 'not recommended
var = 1/(-x) 'correct: negative inverse value

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

94

4.4.2 Type Conversion
In ADbasic, variables can (after dimensioning) generally be used without
paying attention to their data types (LONG or FLOAT, see also chapter 4.2.3
"Data Types"). If necessary the data of the LONG type will automatically be
converted into the FLOAT type.
Do not mix up this conversion with the instructions Cast_FloatToLong or
Cast_LongToFloat, which do quite a different job (see page 144).
Consider the following special features:

– Cut off decimal places

If a floating-point value is assigned to an integer variable, then the dec-
imal places are cut off and will be lost.

– Converting all Integers to Floats

If an expression contains a floating-point value, all integer values are
automatically converted before the expression is evaluated. This app-
lies if an integer expression

• is assigned to a floating-point variable or
• serves as argument for an ADbasic instruction, expecting a

floating-point value.

Example
Par_1 = 2 / 4 * 3 'Result: PAR_1=0, because 2/4 = 0

Decimal places are always cut off within integer calculations, and will
then be lost.

But:
FPar_1 = 2 / 4 * 3 'Result: FPAR_1=1.5
Par_1 = 2 / 4.0 * 3 'Result: PAR_1=1 (cut off!)

Here the floating-point variable FPar_1 and the floating-point value
4.0 demand the conversion of all integer values.

– Prevent integers from Conversion

Even using parentheses does not prevent the automatical conversion
into FLOAT. To absolutely make calculations in LONG, an individual
program line must be used.

Expressions

ADbasic 5.00, Manual March 2010

ADwin

95

Example
Par_1 = 2
Par_2 = 5
'here a conversion is made:
FPar_3 = (Par_2 / Par_1) + 0.2'FPAR_3 = 2.7
'but not here:
Par_9 = Par_2 / Par_1 'PAR_9 = 2 (cut off)
FPar_4 = Par_9 + 0.2 'Result: FPAR_1 = 2.2

– Conversion of Arguments

The following expressions are always evaluated separately (and will be
converted, if necessary, as described above):

• Each individual parameter for an instruction.
Additionally a cut off may occur according to the parameter’s data
type (data type see instruction’s description).

• Each argument passed to a function or subroutine.
• Each individual part of a conditional test within a Boolean

expression in an IF…THEN or DO…UNTIL even if there are
multiple tests linked with AND or OR .

Example
Par_1 = 2
FPar_2 = 5.5

'Both conditions are true,PAR_1 is not converted into
'FLOAT, therefore PAR_3 = 1.
IF ((Par_1 / 4 * 3 = 0) AND (FPar_2 * 1.1 > 5.5)) THEN
Par_3 = 1

ENDIF

'The condition with FLOAT does not influence the
'LONG calculation, therefore PAR_3 = 0.
IF (FPar_2 * 1.1 > 5.5) THEN Par_3 = Par_1 / 4 * 3

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

96

4.5 Selection structures, Loops and Modules
When writinging extensive programs, ADbasic provides the following structure
elements:

– Control structures to help shorten large sections.
• Loops for sections being frequently repeated:

DO … UNTIL or
FOR … NEXT.

• Structures for case-by-case decisions:
IF … ENDIF or
SELECTCASE … ENDSELECT.

– Subroutine and Function Macros to define frequently used program
sections as

• Subroutine macros with SUB … ENDSUB
• Function macros with FUNCTION … ENDFUNCTION

– Libraries of compiled subroutines and functions, which can be included
into a user’s source code with IMPORT:

• Library subroutines with LIB_SUB … LIB_ENDSUB
• Library functions with LIB_FUNCTION … LIB_ENDFUNCTION

– Collections of source code sections and program modules in Include-
Files, which can be included into a user’s source code using
#INCLUDE filename.Inc

More information and examples of instructions can be found in chapter 7
"Instruction Reference".

4.5.1 Subroutine and Function Macros
The syntax of subroutine and function macros is simple, only requiring the
terms SUB … ENDSUB and FUNCTION … ENDFUNCTION around the relevant
program sections, like parentheses. Contrary to subroutines, functions return
a value.
Source code is more clearly structured with subroutines and functions. These
subroutines and functions define macros, whose complete instruction block is
inserted (prior to compilation) into the place of the source code, where it is
called.
Please note: upon each subroutine or function call, the generated binary file
is increasing in size. You can use library functions or subroutines as an alter-
native.

Selection structures, Loops and Modules

ADbasic 5.00, Manual March 2010

ADwin

97

You will find more information about the structure of macro modules in the
instruction reference (page 176: FUNCTION … ENDFUNCTION; page 251:
SUB … ENDSUB).

4.5.2 Include-Files
Source code sections can be collected and stored in an "include" file. Such
files (as well as the source code they contain), can very easily be included into
a source code file with the #INCLUDE instruction.
The content of an include file is based on the same rules as normal source
code files. However, in most cases include files contain only subroutine and
function macros.
When an include file is generated, the source code is entered in the same way
as a "normal" ADbasic file but saved using the File / Save as menu option
with the Include file *.inc file type.
Depending on the include file‘s source, attention must be paid to the position
at which the file is included into another source code file, to maintain a working
program structure. If the include-file contains function and subroutine macros,
it must be included before the INIT: section or after the FINISH:section.
You can also include an include-file into source codes of library files and other
include-files (nested include).
Include files installed with ADbasic contain only subroutine and function mac-
ros, defining instructions for hardware access. Thus, the appropriate position
for these files to be included is the beginning of the source code (see page 73).

4.5.3 Libraries
In a library, compiled library subroutines and functions (modules) can be
assembled. With the IMPORT instruction, the modules of a library can be
included into a process where they will be called.
The library modules are similar to the subroutine and function macros. They
are created in a source code file using the LIB_SUB … LIB_ENDSUB and/or
LIB_FUNCTION … LIB_ENDFUNCTION instructions. The library file is then
compiled using the Build / Make lib file menu option.
Also, calling library modules several times does not increase the size of the
binary file. Compared to macro functions and subroutines, library modules
require less memory when they are called more than once. However, addi-
tional execution time is needed for calling them (compare to chapter 4.5.1
"Subroutine and Function Macros", page 96).

Programming Processes

ADbasic 5.00, Manual March 2010

ADwin

98

Please note that a library module cannot call a library module within the same
library file. It is recommended macro functions and subroutines be used
instead. Alternatively, additional libraries may also be used.
When interlacing libraries (including a library within another library), the
source code calling the libraries must include all levels (see fig. 15), otherwise
an error message will be returned by the compiler.
Recursive calls of library functions or subroutines are not allowed.
You will find more information about the structure of the library modules in the
instruction reference (page 191: Lib_Function … Lib_EndFunction; page 195:
Lib_Sub … Lib_EndSub).

Fig. 15 – Interlaced Libraries

Library 1Source code of a process

Library
functions and
subroutines

<LIB2.LI?><LIB1.LI?>

<ADbasic.BAS>

...
IMPORT LIB2.LI?
IMPORT LIB1.LI?
...

IMPORT LIB2.LI?

Library
functions and
subroutines

Library 2

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

99

5 Optimizing Processes
The ADwin system is designed to quickly and precisely execute control and
measurement tasks. Depending on the requirements it may be necessary to
optimize your ADbasic program for a faster processing time.
The following pages illustrate steps for optimizing a program. Many factors
determine the optimization process which needs to be considered with each
individual case. Please refer to the "ADbasic Tutorial and Programming Exam-
ples" manual to find more examples for optimizing processes.

5.1 Measuring the Processing Time
For optimization it is important to measure the processing time of a process
cycle or of a program section. This can be done using the internal counters of
the ADwin system.
 The processor of the ADwin system has two internal counters, one for high-
priority processes and another for low-priority processes, each incrementing
in different clock rates (see fig. 17 on page 115). The current counter value
can be read using the READ_TIMER instruction; the counter corresponding to
the running process’s priority will automatically be read out.
After power-up, both counters are set to the value 0 (zero), then continually
incremented in fixed clock pulses.
The processing time of the program is measured as a time difference. In the
following example, the processing time of a time-critical program section
(minus an offset) is stored in the global variable Par_1.
To obtain the offset run the both READ_TIMER lines in succession – without
any program lines between them – and calculate the difference of these
values. The offset is to calculate only once for the surveyed program.

Example
DIM t1, t2 AS LONG 'do NOT use float here

EVENT:
Rem …
t1 = READ_TIMER()
Rem Time-critical section
Rem …
t2 = READ_TIMER()
Par_1 = t2 - t1 -4 'Process time in clock pulses

'(offset = 4 clock pulses)

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

100

If Par_1 in the example above equals 37, the time-critical section of
the high-priority process requires 37 × 25ns = 925ns.

It is also possible to measure the time difference between two external events,
in an event-driven process. In the following example the measurement is
stored in the global variable Par_1.

Example
DIM oldtime, time AS LONG

INIT:
oldtime = READ_TIMER()

EVENT:
time = READ_TIMER()
Par_1 = time - oldtime
oldtime = time

5.2 Useful Information

5.2.1 Accessing Hardware Addresses
Many of the ADwin system functions are managed by its control and data regi-
sters. These functions can quickly be executed by directly accessing the rele-
vant registers with the PEEK and POKE instructions. Here, "directly" means
that the functions’ addresses are not calculated in the process cycle, but pas-
sed as constant values: saving computing time for the calculation.
The addresses for the control and data registers can be found in the relevant
hardware manual.

5.2.2 Constants instead of Variables
A calculation is executed faster when the values are specified as constants
and not as variables.

Example
FPAR_1 = SQRT(PAR_2) 'with PAR_2=17
FPAR_1 = SQRT(17)

For the first calculation the value of the variable Par_2 must be deter-
mined during run-time. The root must then be calculated and assigned
to Par_1.

Useful Information

ADbasic 5.00, Manual March 2010

ADwin

101

In the second calulation the compiler already has determined the va-
lue. During run-time it will only be assigned.

5.2.3 Faster Measurement Function
With the ADC instruction, an analog-to-digital (A/D) conversion for a channel
with a specified gain is carried out. In order to make its application easier, the
instruction is kept rather simple and combines several sequencesADC (see
hardware manual for the ADwin system).
There are different situations resulting in a faster processing when using these
individual sequences, compared to using the ADC instruction.
For instance, the ADC instruction does not consider that the ADwin-Gold-
system has two ADCs, which are able to convert two different channels at the
same time. This is illustrated in the following example:

Example
REM Example for Gold
REM Set both multiplexers of the ADC to the channel 1
SET_MUX(000000b)
Rem wait for settling time
Rem …
START_CONV(11b) 'Start conversion on both ADCs
WAIT_EOC(11b) 'Wait for end of conversion
Par_1 = READADC(1) 'Read out ADC1
Par_2 = READADC(2) 'Read out ADC2

The ADwin-light-16 system has only one ADC.

5.2.4 Setting Waiting Times Exactly
Using a waiting time, you can easily set an exact offset between 2 instructions,
for example to bridge the multiplexer settling time between SET_MUX and
START_CONV.
The instruction for setting the waiting time depends on the processor type:

– Processors T9 and T10:

The instruction SLEEP sets the waiting time exactly: The processor
stops for the pre-set time, causing the next instruction to be started with
appropriate delay.

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

102

Waiting for the multiplexer settling time of 14µs on a Pro I module
would then work like this:
SET_MUX(2,00000b) 'Set Mux to channel 1
REM Here a calculation may be done, which e.g. takes
REM 8µs of the free processor time.
SLEEP(60) 'wait remaining 6µs until 14µs
START_CONV(2) 'Start conversion

– Processor T11:

There are 3 possible instructions for the waiting time:
• P1_SLEEP makes the Pro I bus wait, but also Pro II bus and

external DRAM.
• P2_SLEEP makes the Pro II bus wait.
• CPU_SLEEP makes the processor wait (refers to SLEEP).

If the waiting time gaps a delay between I/O-instructions for Pro I mo-
dules, P1_SLEEP is the right choice; for Pro II modules it is P2_SLEEP.
The instruction CPU_SLEEP makes sense only rarely.

Waiting for the multiplexer settling time of 14µs on a Pro I module
would then work like this:
SET_MUX(2,00000b) 'Set Mux to channel 1
P1_SLEEP(1400) 'Make Pro I bus wait 14µs.

'Note the time unit.
START_CONV(2) 'Start conversion
REM The calculation follows but now; the T11 processor will
REM process it automatically in parallel with the I/O
REM instructions.
REM Attention: Within the calculation you should use variables
REM from internal memory only. Otherwise the calculation may
REM anyhow not be run until the I/O instructions are completely
REM processed.

Useful Information

ADbasic 5.00, Manual March 2010

ADwin

103

Why are there different instructions for the waiting time? The processor
T11 runs processor instructions and I/O instructions1 quasi-parallel
(see sketch above). This is very fast, and also leads to parallel and thus
separate timing, resulting in 3 instructions for the waiting time.

The quasi-parallel processing is enabled via a 5-level buffer OFIFO:
The operating system passes an I/O instruction into the OFIFO (if there
is enough space) and immediately starts processing the next instruc-
tion. The example above passes the instructions SET_MUX, P1_SLEEP
and START_CONV into the OFIFO; the subsequent calculation is then
run in the CPU, while e.g. the Pro I bus2 is still waiting.

Please note: A calculation, that is to be processed in parallel in the
CPU, may only use variables from internal memory. The operating sys-
tem regards each access to the external DRAM, the common memory
area for arrays, as an I/O instruction that has to walk through the
OFIFO buffer.

5.2.5 Using Waiting Times
Some instructions require a certain waiting time after being called. This time
can be used for other calculations.

1. I/O instructions are those, which access external devices via the OFIFO
buffer. External devices (as regards the CPU) are modules on the Pro I or
Pro II bus and the external memory DX.

2. More precisely, the instruction P1_SLEEP makes the buffer OFIFO wait, not
the Pro I bus.

Processor T11

ADbasic
process

CPU

I/O instructionProcessor
instruction

Pro I bus

Pro II bus

ext. DRAM

P1_SLEEP

P2_SLEEP

CPU_SLEEP

OFIFO

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

104

The SET_MUX and START_CONV instructions require waiting time for the sett-
ling of the multiplexer and the conversion of the ADCs. During this waiting
time, the processor is not busy and could be used for other tasks.
More detailed information about the required waiting times for data conversion
can be found in your hardware manual.
The next example is an extension of the previous example, showing how two
measurements are executed across two separate ADCs. Compared to the
ADC instruction, this enables execution of 4 times the number of measure-
ments.
The key feature of the example is to carry out the individual steps in the con-
version process not sequentially but rather in parallel. The time delay for mul-
tiplexe setting is carried out during the A/D conversion of the other channels.
Both measurement processes are overlapped: The start of conversion for the
channels 1+2 is followed by setting the multiplexer for the channels 3+4.

Example
REM Example for Gold Rev. B
INIT:
SET_MUX(000000b) 'Set Mux for first measurement,

'channels 1+2
SLEEP(140) 'Wait 14 µs

EVENT:
START_CONV(11b) 'Start conversion (channels 1+2)
SET_MUX(001001b) 'Set Mux, channels 3+4
WAIT_EOC(11b) 'Wait for end of conversion

' (channels 1+2)
Par_1 = READADC(1) 'Read out ADC1, channel 1
Par_2 = READADC(2) 'Read out ADC2, channel 2

START_CONV(11b) 'Start conversion(channels 3+4)
SET_MUX(000000b) 'Set Mux, channels 1+2
WAIT_EOC(11b) 'Wait for end of conversion

' (channels 3+4)
Par_3 = READADC(1) 'Read out ADC1, channel 3
Par_4 = READADC(2) 'Read out ADC2, channel 4

The INIT: section sets the multiplexer up for the first measurement so
that the A/D is ready the first time the EVENT: section is executed.

It is very important that adequate delay for the multiplexer settling time and
A/D conversions be provided or incorrect measurements or A/D conversion

Debugging and Analysis

ADbasic 5.00, Manual March 2010

ADwin

105

failures may be obtained. There are some hints in chapter 5.2.4 "Setting Wait-
ing Times Exactly".

5.2.6 Optimization with Processor T11
This section describes how to use the specific features of the T11 processor
to speed up a process, especially by optimized memory access.
If nonetheless you reach the processor’s limits, further optimizations are pos-
sible, but only in connection with your specific application. Please contact our
support (see address inside the manual’s cover page).

Using internal memory
For time-critical sequences, use variables and arrays in the internal memory
(EM or DM) as possible. While variables are declared automatically in the
internal memory, arrays (both local and global) have to declared as follows:
DIM DataLocal[100] AS LONG AT DM_LOCAL
DIM Data_5[2000] AS FLOAT AT DM_LOCAL

Compared to internal memory the access of processor T11 to external mem-
ory slows down for 2 reasons. On the one hand the memory access is passed
into the OFIFO buffer (see page 103) as I/O instruction, which can cause
delays. On the other hand the administration of external memory is slower
than of the internal memory.

Accessing the external memory
For the access to the external memory try to use – as fas as possible in the
program – data blocks, and don’t access single values. If using block-wise
data transfer the processor enables an accelerated access, so e.g. transfer-
ring a block of 20 values quicker than 3 single values.
As an example, the block data transfer is quite useful, if a lot of measurement
values are read in short time: At first the collected data packet is saved in quick
internal memory. As soon as the measuring task reaches a non-critical sta-
dium, the data are transferred as block into external memory using the instruc-
tion MEMCPY, leaving the internal memory ready for the next collected data
packet.

5.3 Debugging and Analysis
Debug, timing, and trace modes are ADbasic’s hands-on tools for debugging
and program analysis. All modes are activated via the "Debug" menu (see

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

106

page 29) and add their helping features to those programs, which are com-
piled with active mode.
Please note: Activating of the modes produces additional program code. Thus
the program will need a longer processing time as well as additional memory
– at times at considerable rate. We therefore recommend that you use these
tools for developing and testing of programs only.

5.3.1 Finding Run-time Errors (Debug Mode)
The debug mode is a helping tool to find the following run-time errors in ADba-
sic programs:

– Division by zero

– Square root from a negative value

– Access to too large / too small element numbers of an array
Without debug mode, these run-time errors are simply ignored, i.e. though the
result of the program line is undefined it is nevertheless used for the following
program. This may cause, depending on the program, an unwanted behav-
iour, in worst case even the "crash" of the ADwin system.
The option "Debug mode" is activated from the "Debug" menu; do then com-
pile the source code to be checked. On occurrence of a run-time error it is
automatically displayed in the "Debug Errors" windows. As well, the run-
time error is being corrected to maintain a stable mode of operation.
Errors being found should always be eliminated; even the automatic error cor-
rection of the debug mode is no more than a debugging tool, which does not
fit for continuous operation.
Details about activating and display of run-time errors are shown in section
"Debug mode Option" on page 52.

5.3.2 Check the Timing Characteristics (Timing Mode)
The ADwin system is designed in such a manner that an arriving event signal
for a high-priority process (externally generated or by an internal counter)
immediatley starts the relevant process cycle. Processes with such "good"
timing characteristics are deterministic and execute their tasks exactly at a
predetermined period of time.
To check timing characteristics of processes requires some effort, especially
when changes are to be made later, to obtain good timing characteristics. This
effort is worth its price, when required higher frequencies or additional tasks

Debugging and Analysis

ADbasic 5.00, Manual March 2010

ADwin

107

put the processor workload to its limit. Another example are process cycles not
start as exactly as predetermined according to the measurement task.
In the timing mode, information is generated, which can be used to check
selected high-priority processes if they have "good" timing characteristics. For
these processes 7 parameters are calculated, which are displayed in the Tim-
ing Analyzer Window.
Processes have good timing characteristics when the following situations do
not (or rarely) occur:

1. An event signal does not start a process cycle immediately, but a cer-
tain (not exactly defined) time later.

2. An event signal does not start a process cycle at all, but gets "lost".
Even several lost event-signals are possible.

In the first case the operating system tries to make up the delay by using avail-
able idle times in the workload of the processor, until all process cycles again
start at the pre-defined period of time. In the latter case the operating system
cannot make up the delay: Event signals and therefore process cycles are
really lost (see chapter 6.2.5 "Different Operating Modes in the Operating Sys-
tem").
An optimal timing characteristic, especially of the high priority processes, is
obtained in 2 steps by:

1. Checking Number and Priority of Processes

2. Optimal Timing Characteristics of Processes
(Use Timing Mode)

Checking Number and Priority of Processes
In a high-priority process only time-critical tasks should be processed, all other
tasks in one or more low-priority processes (or even processed on the PC).
If possible use only one single high-priority process. Several processes can
very often be merged to a single process; if the Processdelay is identical, we
highly recommend this. It’s worth the effort – especially with a shorter Process-
delay of the processes – because the processor workload will be essentially
lower even if the the same tasks are executed. The graphic below illustrates
this more clearly:

Optimizing Processes

ADbasic 5.00, Manual March 2010

ADwin

108

With several high-priority, time-controlled processes, process cycles cannot
be prevented from starting time-delayed (except their Processdelays are inte-
ger multiples of each other).

Optimal Timing Characteristics of Processes
A high-priority process has an optimal timing characteristic under the following
conditions:

– All process cycles of the process have an almost equal processing
time.

– The processing time of the process cycle is as short as possible.

– The Processdelay of the process is longer than the longest processing
time of all process cycles.

Nevertheless, the processor workload for high-priority processes must leave
enough processor time available for the tasks of low-priority and communica-
tion processes.
To get more information about the timing characteristics of interesting pro-
cesses proceed as follows:

1. Activate the timing option with Debug Enable timing analyzer.

2. Compile (and start) the ADbasic source code.

For each source code which you compile with active timing option, in-
formation about timing characteristics are generated automatically. We

Processor
workload

Number of (high priority) processes
1 2 3 4 5 6 7 8 9 10

0 %

100 %

Globaldelay = 200

Globaldelay = 5000

Debugging and Analysis

ADbasic 5.00, Manual March 2010

ADwin

109

recommend to view only a small number of processes at once, so that
the timing characteristics will not be influenced too much (see below).

3. Disable the Debug Enable timing analyzer option again, so that
other processes being compiled do not unnecessarily generate timing
information.

4. Open the Timing Information window via the Debug Show tim-
ing information menu item.

Note that the timing characteristics on the ADwin system depend on the num-
ber and type of the processes, thus causing accordingly different parameters.
One reason for this fact is the process management of the operating system
(see chapter 6.2.5 "Different Operating Modes in the Operating System").
The evaluation of the information is made during run-time and needs approx.
60 clock cycles additionally (when using a T9, T10 or T11 processor) per pro-
cess cycle and process. The parameters in the window are continuously
updated and refer to the time passed since the last start of the processes. A
short description of the parameters can be found under the Show timing infor-
mation Menu Item, page 48.
The (minor) change of timing characteristics by the timing mode itself cannot
be avoided and exists even if no parameters are displayed. This may result
under certain circumstances in further latencies, and is also reproduced in the
corresponding parameters; in short processes with a short Processdelay, a
processor workload of more than 100% can be reached sometimes, so that
the communication to the PC is interrupted.
Please note that during compiling high-priority processes using the timing
option, a low-priority process can be considerably delayed.

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

110

6 Processes in the ADwin System
An ADwin system has the capability to control complex test stands while
rapidly executing measurements. Programs using one or more ADbasic pro-
cesses are used to provide this capability. Within these processes you can
specify how analog and digital data is processed within the ADwin system and
how it is exchanged with external devices and PC.
After starting the process the program1 in the ADwin system is (characteristi-
cally) restarted and processed in regular time intervals. This calling of a pro-
cess cycle is triggered by one of the following start signals, called events:

1. Timer event: A pulse of the internal counter. You determine for each
process separately in which time interval (processdelay) a new event
is triggered.

2. External event: An external signal, which arrives at the event input of
the ADwin system. This could be for instance the pulse of an incremen-
tal encoder.

Only one of the 10 possible processes can be controlled by an external event,
all other processes have to run time-controlled.
You define the exact function of a process in the ADbasic source code:

– The initialization in the sections LOWINIT:and/or INIT:.

– The actual function of the process cycle in the central EVENT:section
(event loop).

– The final processing in the FINISH: section.
It is possible to control the processes from the computer, that is the processes
are started, stopped or their processdelays changed. You can do this with
ADbasic as well as with other development environments such as C++ or
Visual Basic.
With the bootloader option, it is also possible to have processes start automa-
tically on power-up of the ADwin hardware. For programming the bootloader,
see manual "ADwin bootloader".

1. more precisely: the program section EVENT:.

Process Management

ADbasic 5.00, Manual March 2010

ADwin

111

6.1 Process Management

6.1.1 Types of Processes
Within the ADwin system several processes can run simultaneously. The
operating system is responsible for calling the process cycles according to
specified rules, and for their being processed by the CPU without blocking
each other.
When referring to a "process" in this manual, we mean one of the processes
1...10, that you have programmed.
You assign a priority to each process and thus determine the interaction and
timing of the processes. There are the priorities:

– Processes with High-Priority

– Processes with Low-Priority

Low-priority processes are further divided into the levels -10 (low) up
to +10 (high).

The process priority is set via the menu Options \ Process Options.

Fig. 16 – Overview of all processes

The standard processes, processes 11 and 12, are only necessary when
using the drivers for the Labview and Testpoint environments. These proces-
ses can be loaded during the boot process along with the operating system,
either from a developer environment (for more details, see the ADwin devel-
oper manual), or from ADbasic. To do this, set the option Load Standard
processes to Yes in the ADbasic menu Options / Compiler.

Process Function Prioritya

a. The meaning of the priorities is described in the following sections

1…10 User-defined processes with functions and pri-
orities you can freely define

low level n
/ high

11, 12 Predefined input / output processes high

15 Process for controlling the flashing LED in
ADwin-Pro and ADwin-Gold systems

low,
level 1

Communica-
tion

Communication between the ADwin system
and the computer: Instruction and data
exchange

medium

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

112

If you are not using one of these applications you can stop the transfer of the
standard processes during booting (setting No).
The communication process (see page 113) is part of the operating system.
It receives commands of the computer and exchanges data between the
ADwin system and computer only when the computer requests them.
If you transfer more than one process with the same process number to the
system, only the last process transferred is executed, because the earlier
transferred processes are overwritten.

6.1.2 Processes with High-Priority
Processes with "high" priority get preferential treatment from the operating
system:

– The maximum latency from when a high priority process is called by an
event to when execution of the process begins is 300ns.

– A high-priority process cycle cannot be interrupted and is always com-
pletely processed. During this time all process cycles with low-priority
are blocked.

Neither another high-priority process cycle nor a stop instruction can
interrupt a running, high-priority process cycle. In both cases the sys-
tem will complete the current high priority process cycle before pro-
ceeding.

In time-controlled high-priority processes the cycle time (processdelay) can be
set in intervals of 25 ns.
The software should be written so that time-critical measurement processes
run with high-priority and all others run with low-priority, so that the processor
can process the time-critical process cycles without any interference from
other operations.
The sections LOWINIT: and FINISH: of a process – if there are any – are
always executed with low-priority, priority level 1, even if the process is set to
run with high-priority.

6.1.3 Processes with Low-Priority
Process cycles with low-priority are immediately interrupted when a process
cycle with a higher priority is called and will stay interrupted until that higher
priority process cycle has finished.
Low-priority processes are further divided into the priority levels -10 (low) up
to +10 (high). Process cycles with a low level can be interrupted by those with

Process Management

ADbasic 5.00, Manual March 2010

ADwin

113

a higher level at any time. The processor T11 keeps strictly to the priority lev-
els for process management (see chapter 6.2.3 on page 117).
Low-priority processes of the same priority level participate in time slicing.
Here the operating system apportions the computing time to the process
cycles alternating and in equal time slices. One time slice takes 2ms (proces-
sor T9) or 1ms (processors T10, T11) on average.
Low-priority processes must always be time-controlled. The cycle time (pro-
cessdelay) can be set in discrete intervals; interval size see fig. 17 on
page 115.
Processes with low-priority on principle do not influence the time characteristic
of high-priority processes, but vice versa they surely do.

6.1.4 Communication Process
The communication process has a priority level between the priorities "high"
and "low". Therefore it can interrupt low-priority process cycles any time and
can be interrupted by high-priority process cycles.
If the computer requests information from the ADwin system, the communica-
tion process must respond within 250ms or a time-out will occur, the commu-
nication between the computer and the ADwin system may be interrupted. In
this case the message The ADwin system does not respond will be dis-
played and the system will have to be reinitialized by rebooting the ADwin
system. The time-out is independent of the communications interface, either
USB or Ethernet.
The cause of an interruption in the communication is that the communication
process does not have enough processor time allocated to it. This can be
caused by the following facts:

– the processdelay of the high-priority processes is too short or

– the processing time of a high-priority process cycle is too long.
More about this subject can be found in chapter 6.3.2 on page 121.

6.1.5 Memory fragmentation
The operating system of the ADwin system cares for storing processes, arrays
and variables at an adequate memory position and using them correctly.
Therefore the user normally has no problems with memory management
which thus would need no explanation.
Under certain circumstances, the error message „Not enough memory or
memory access error. Please reboot the ADwin system.“1 occurs.
Often, the reason is an external memory fragmentation, which arises from pro-

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

114

cesses or data arrays being loaded into memory multiple times and with
increasing size; a typical action e.g. for the development of new processes.
A simple solution is to boot the ADwin system and load the data anew.
A memory fragmentation is defined as free storage being dispersed between
allocated regions. If now a new data block like a process or an array is loaded
into memory–where it can only be stored as complete unit–it may happen, that
the data block does not fit into any of the free memory fragments. You receive
the above error message and have to reorganize the memory in order to
obtain free memory of sufficient size.
Booting and loading anew is useful here, since the data blocks are stored con-
sequently without a gap and the free memory remains as a unit.
The result of memory fragmentation can be a memory which cannot store any
more data–regardless of being a process or a data array. According to the pro-
cessor type an error message pops up or the ADwin system shows 100%
workload. A simple solution is to boot the ADwin system and load the data
anew.
Example: Two (quite large) processes are already loaded to memory.
Process 1 is to be replaced by new code with increased size, but the data
block does not fit into memory neither before nor behind process 2 and you
receive the mentioned error message. After booting and loading in different
sequence, process 1 can be loaded any time without the risk of memory frag-
mentation.

As an alternative, you may also delete process 2 manually and load both pro-
cesses anew. The advantage is to retain the values of global variables and
arrays; for a global array this is only true, if the array size remains unchanged.
The difficulty in manual deletion, especially with increasing number of pro-
cesses, is to keep the overview of the order in which processes are stored in
memory.

1. With processors T9 and T10 there is no error message, but the ADwin sys-
tem has a workload of 100%.

Process 1

Process 2

Process 2

new process 1 new process 1

Process 2 new process 1

Previously loaded

Process 1 cannot be
loaded anew

Boot and load anew with
different sequence

Time Characteristics of Processes

ADbasic 5.00, Manual March 2010

ADwin

115

Alike with process memory, memory fragmentation may also occur in data
memory multiple dimensioning of data arrays with changing size, e.g. during
development of a process. If so, loading the process will release the allocated
memory of the (newly dimensioned) arrays and for each array a new memory
range has to be found, leading to memory fragmentation. The simple solution
is to boot the ADwin system and load the data anew, too.
Generally, global arrays may be deleted individually in ADbasic using Clear
Data (see chapter 3.7.7 on page 54), in order to obtain free memory of suffi-
cient size. But if a fragmentation occurs, most times you don’t know the order
in which arrays are stored in data memory, so booting is normally to be pre-
ferred.
Please note: If global arrays are used in several processes, they have to be
declared identically in each process. In this case it is practical to save these
declarations of global arrays into an include file and include the file into all of
these processes (see also chapter 4.5.2 "Include-Files").

6.2 Time Characteristics of Processes

6.2.1 Processdelay
The time interval, in which time-controlled process cycles are called by the
counter, which is the cycle time of the event section of the process. It is usually
measured in clock cycles of the system clock and called Processdelay, (in ear-
lier ADbasic versions: Globaldelay). The processdelay of each process is spe-
cified by setting the value of the system variable PROCESSDELAY.
The time resolution of the system clock depends on the process priority and
on the processor type:

Fig. 17 – The time resolution of the system clock (units of the processdelay)

For instance, a processdelay with the value 1000 means that for a high-priority
process on a processor T9 it is called in time intervals of 1000 × 25ns =
25000ns = 25µs, while for a low-priority process in a time interval of

Processor Priority

High Low

T9 25ns 100µs

T10 25ns 50µs

T11 3.3ns 3.3ns = 0.003µs

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

116

1000 × 100µs = 100000µs = 100ms. You can specify this event interval in the
program line:

PROCESSDELAY = 1000

The processing time of a process cycle must not, even under worst case cir-
cumstances, be higher than the cycle time, so that each process cycle can be
called at the time specified (with PROCESSDELAY). Differences in the compu-
ting time may arise from different program sections which are run conditio-
nally. (If, Case).

Fig. 18 – Processdelay and processing time in high-priority process cycles

Example

If an extensive calculation is executed only every, say 1000 measure-
ments, then the long processing time of this process cycle must be
shorter than the cycle time. In order to obtain short process cycles one
alternative is to divide the calculations into small steps and to process
a step in each process cycle. Thus the process cycles have a consis-
tent, short processing time.

6.2.2 Precise Timing of Process Cycles
If you have (as shown in fig. 18) only one high-priority process, it will be called
and processed exactly in its time schedule.
Make sure that the processing time of a high-priority process cycle never
exceeds its cycle time (in the example below: 25µs). This process cycle can-
not be interrupted, thus other process cycles can only be partially processed
or not at all, for instance the important communication process.
If there are several high-priority processes, the actually running process cycle
can influence the time schedule of the remaining process cycles. In fig. 19 for
instance, process 1 has to start with a delay when the processing of the active
process 2 has finished.

Processdelay
(cycle time)

Processing time

125 µs 200 µs175 µs150 µs

Processor free

Process 2

Time Characteristics of Processes

ADbasic 5.00, Manual March 2010

ADwin

117

Fig. 19 – Delay of a high-priority process cycle

Keep the execution time of high-priority process cycles as short as possible.
Have event loops, which require long processing time, or calculations whose
result cannot be immediately be processed, always run in process cycles with
low-priority.
A low-priority process depends on the time characteristics of all other process
cycles with the same or higher priority. Each interruption minimizes the time,
a low-priority process cycle can use the computing power, and in the worst
case it will not be called at all.

6.2.3 Low-Priority Processes with T11
The processor T11 manages low-priority processes strictly be their priority
level. In contrast, priority levels are of little importance with T9 or T10. Never-
theless, communication process and high-priority processes still take prece-
dence over all low-priority processes.
The process management of low-priority processes is different for:

– Processes of different priority levels: All processes of lower priority
level are interrupted, as soon as and as long as a process of higher pri-
ority level is processed.

Processdelay 2

125 µs 200 µs175 µs150 µs

Process 2

Process 1

Retardation

Processdelay 1

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

118

In this case, process 2 is of higher priority level and therefore interrupts
process 1 several times.

– Processes of equal priority levels: The processes take part in time slic-
ing, that is, within the priority level, the operating system portions out
the processor’s operating time to the process cycles alternating and in
equal time slices (1ms).

The example shows the changeover of the processes quite clearly.
Please note the rule, that a process - process 1 in this example - im-
mediately receives a time slice upon the call of its process cycle.

There is a rare and special case which annuls time slicing: A process
receives a lot of processing time, if both it is frequently called and its
process cycle takes shorter than one time slice. With each call the pro-
cess interrupts other processes of the same priority level and thus
"steals" their processing time.

6.2.4 Workload of the ADwin system
The workload of the processor on the ADwin system is the ratio of the com-
puting time used to the available computing time, indicated in percent.
You can monitor the workload of the processor in the status line display Busy
within the development environment (see chapter 3.8.5). This value gives you
an indication if the processor still has enough computing time available to
complete all of the required activities.
The workload of the processor should exceed 90 percent only in exceptional
cases and must not exceed 100 percent.
Please note for processor T11: Although a workload below 90% is displayed,
an overload can exist, so that some process cycles might be processed with
delay. In this case, the overload exists on the internal Pro I or Pro II bus, not
int the processor, and can therefore not be displayed.

Time Characteristics of Processes

ADbasic 5.00, Manual March 2010

ADwin

119

6.2.5 Different Operating Modes in the Operating System
The operating system differentiates between 2 operating modes for the timing
characteristics in high-priority processes, depending on the fact if several
time-controlled (high-priority) processes are active or only one.
If an additional externally controlled process is running, is of no importance
here. The externally controlled process is managed separately by the operat-
ing system and can therefore be seen as a third operating mode.

Single Time-Controlled Process
With a single time-controlled process the operating system uses hardware
components to process the event signals of the internal counter. In this case
the operating system processes an incoming event signal very quickly.
The hardware components can buffer if an event signal has arrived, but not
how many event signals have arrived. If an event signal has arrived, the oper-
ating system activates the next process cycle at the fixed period in time (Pro-
cessdelay see chapter 6.2.1), unless a high-priority process cycle is just being
processed. In this case the operating system activates the next process cycle
immediately after the currently running process cycle.
If a number of event signals arrive during a high-priority process cycle, only
one single process cycle is called and not the number of arrived process
cycles, respectively. As a consequence all but one of those event signals are
lost. Therefore we recommend the process cycles absolutely be shorter than
the cycle time (Processdelay) of the process.

Several Time-Controlled Processes
With several time-controlled processes, the operating system itself manages
arriving event signals. This operating mode is working slower due to this man-
agement efforts, but the number of all arriving event signals are buffered for
each process. Thus it is ensured, that for each event signal a process cycle is
started, even if this happens later than the pre-defined instant of time.
Frequently the time schedules for starting the process cycles are the reason
for the fact that event signals continuously occur during the processing of
another process cycle. With other words, the Processdelay values are not
integer multiples of each other. We recommend that only few processes are
used; it is often possible to merge several processes to one single process
(this results in a smaller processor workload, too).

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

120

Always keep in mind that the processor workload depends very much on the
number of processes running. Thus a task performed by 2 (or even more) pro-
cesses will always take more workload than the same task within a single pro-
cess. This is the more of importance the shorter a Processdelay is (see also
chapter 5.3.2 on page 106).
Example: Processes 1 and 2 with a very short Processdelay running as a sin-
gle process each generate 10% workload; both processes together have a
workload of 55%.

Externally Controlled Process
The operating mode for the externally controlled processes is, independent of
time-controlled processes, always the same. The operating system manages
the external process as a single time-controlled process (see above), that is,
arriving event-signals are processed very quickly, but event signals can also
be lost.
An external event signal is a rather important information–in particular,
because it cannot be predefined by the ADwin system–and must not get lost
(finding lost events, see page 48). Therefore note to have short process
cycles in this process (in the section EVENT:).

6.3 Communication

6.3.1 Data Exchange between Processes
Data can be exchanged between different processes via global variables
(Par_n, FPar_n) or global arrays (Data_n). Data can be exchanged with
programs running on the PC using these variables and arrays as well.
If global arrays are used in several processes, they have to be declared iden-
tically in each process. In this case it is practical to save these declarations of
global arrays into an include file and include the file into all of these processes
(see also chapter 4.5.2 "Include-Files").
Global variables can be used by one process to control a process running
simultaneously.

Example

Process 1 is a function generator and Process 2 is a controller. The
function generator regularly writes the generated value into the global
variable Par_10. At every event loop the controller process reads out
the global variable Par_10 and uses its contents as setpoint of the
control loop.

Communication

ADbasic 5.00, Manual March 2010

ADwin

121

Thus the function generator very easily controls the setpoint of the con-
troller. All local variables and arrays of Process 1 are hidden from Pro-
cess 2 (and vice versa). Take into account that the t iming
characteristics of both processes must be considered.

6.3.2 Communication between PC and ADwin System
From PC applications and development environments, you can control the
processes on the ADwin system, as well as request data from or send data to
the system. An ADwin system cannot communicate with the computer on its
own, but instead responds to requests coming from the computer.
All data exchange is made via global variables (Par_n, FPar_n) or global
arrays (Data_n). This refers also to the Data Exchange between Processes
(see above).
The communication to the ADwin system is managed under Windows with the
ADwin32.dll (dynamic-link library). In the ADwin system the communication
process is responsible for this task (page 113).
If you are working with the ActiveX interface, the latter is responsible for the
communication with the ADwin system. Internally the ActiveX interface trans-
fers or gets the data via the ADwin32.dll.
The ADwin32.dll has the following tasks:

– Communication with the connected ADwin system via the specified
communication interface: USB, Ethernet (TCP/IP).

– Recognizing and handling of communication errors.

– Blocking several computer applications if they want to access the
same system at the same time.

With the blocking mechanism several applications can simultaneously
access one or more ADwin systems independent of each other.

If a computer application starts the communication to a system, it transfers a
device number in addition to the specified instruction. The ADwin32.dll
uses this "Device Number" to differentiate between the various ADwin sys-
tems and assign the corresponding configurations.

–

6.3.3 The Device Number
Each ADwin system connected to a computer is accessed via a unique device
number (unique to the PC).

Processes in the ADwin System

ADbasic 5.00, Manual March 2010

ADwin

122

You set the device number with the program ADconfig: .
In ADconfig you link a Device Number with the communication parameters,
which define how a system can be accessed (USB, Ethernet). This is the infor-
mation the ADwin32.dll needs in order to being able to communicate with
the system.

6.3.4 Communication with Development Environments
You access the ADwin system from the PC with the help of a user interface.
You may generate this user interface with one of the conventional develop-
ment environments such as ActiveX, Java, Visual Basic, C++, Delphi or
C#.NET, or you may use a ready-made user interface such as TestPoint, DIA-
dem or MATLAB.
For each of these an appropriate driver software, which enables you to access
the ADwin system is provided. If you have a special request, please contact
us. We can also provide turnkey measurement data evaluation programs.
Under Windows a DLL or ActiveX interface can establish the communication
with the system simultaneously from several programs (see also "Communi-
cation between PC and ADwin System" on page 121). The special instruc-
tions for your user interface are described more detailed in the relevant ADwin
developer software.
From your user interface you can:

– transfer compiled programs (binary files) into the ADwin system. Com-
pile the program in ADbasic with Build Make Bin File (see
chapter 3.7.4 on page 39).

– start, control and stop processes in the ADwin system.

– request data from the ADwin system or send data to the system.
Although the ADwin system works independently, you can access global vari-
ables and arrays from the user interface any time, without delaying time-criti-
cal processes. This way all processes can quickly exchange data with the
computer (or with each other).

Instruction Reference

ADbasic 5.00, Manual March 2010

ADwin

123

7 Instruction Reference
Below, the available ADbasic instructions for ADwin processors are listed.
Instructions for inputs/outputs be found in the hardware manual.
The instructions are listed in alphabetical order. In the annex there are instruc-
tion overviews sorted by ADwin system and by alphabet.
In chapter 7.3 and chapter 7.4 the ADbasic instructions are listed for the use
of the FFT Library as well as Mathematics Instructions.

7.1 Instruction Syntax
Please note:

– Any expressions can be used as arguments.

– Some arguments require a specified data structure, which are labelled
as follows:

– The expected data type is given for each argument and for a function’s
return value:

If the argument has a different data type than expected, you will get a
type conversion of the argument (chapter 4.4.2 on page 94).

– Some instructions can only be used, when a specific library or Include
file is included. Under Syntax the relevant include-instruction is indi-
cated (place this command line at the beginning of the source code).

CONST constant numbers such as 35 or 3.14159, and
expressions without variables.
Character constants (strings) are enclosed in
quotes such as "this text".

VAR variable or array element.
ARRAY array, also identified in the command syntax by its

brackets [] after the array name.
FIFO fifo array (DATA_n declared as fifo).

LONG integer number
FLOAT floating point number
STRING character string
LOGIC logic expression in a condition

Instructions for L16, Gold, Pro

ADbasic 5.00, Manual March 2010

ADwin

124

We assume that the necessary library or include file is located in the di-
rectory, which is set under the Options Settings menu, Direc-
tory item, (see also the instructions #INCLUDE or IMPORT).

7.2 Instructions for L16, Gold, Pro
The instructions in this section are valid for the processors of all ADwin sys-
tems.

+ Addition

ADbasic 5.00, Manual March 2010

ADwin

125

+ Addition
The "+" operator adds two values (see also "+ String Addition").

Syntax

ret_val = val_1 + val_2

Parameters

Notes

Please note that combining different variable types with the "+" opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

See also

- Subtraction, * Multiplication, / Division, ^ Power

Example
PAR_1 = 9 + 4 'PAR_1 = 13

val_1 Addend 1. FLOAT

LONG

val_2 Addend 2. FLOAT

LONG

LONG FLOAT

+ String Addition

ADbasic 5.00, Manual March 2010

ADwin

126

+ String Addition
The "+" operator concatenates two strings (see also "+ Addition").

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

val = val_1 + val_2

Parameters

Notes

If you concatenate two strings and assign them to another string, the
size of the destination string must be declared greater or equal to the
sum of the sizes of the input strings.

See also

String "", Asc, Chr, FloToStr, Flo40ToStr, LngToStr, StrComp, StrLeft,
StrLen, StrMid, StrRight, ValF, ValI

Example
IMPORT String.li9

'Dimension 3 strings: 10, 5, 4 characters
DIM res_str[10] AS STRING
DIM str_1[5] AS STRING
DIM str_2[4] AS STRING

INIT:
str_1 = "ADwin" '5 characters
str_2 = "Gold" '4 characters

EVENT:
res_str = str_1 + "-" + str_2 'Concatenate strings

PAR_1 = STRLEN(res_str) 'PAR_1 = 10(number of the characters)

val_1 character string1. STRING

val_2 character string 2. STRING

- Subtraction

ADbasic 5.00, Manual March 2010

ADwin

127

- Subtraction
The "-" operator subtracts one value from another.

Syntax

val = val_1 - val_2

Parameters

Notes

Please note that combining different variable types with the "-" opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

If you use "-" as a sign of a variable (unary operator), you may in some
cases get unexpected results, which can be avoided by using brackets
(see also chapter 4.4.1 on page 92).

See also

+ Addition, * Multiplication, / Division, ^ Power

Example
PAR_1 = 9 - 4 'PAR_1 = 5

val_1 Minuend. FLOAT

LONG

val_2 Subtrahend. FLOAT

LONG

LONG FLOAT

* Multiplication

ADbasic 5.00, Manual March 2010

ADwin

128

* Multiplication
The "*" operator mulitplies two values.

Syntax

val = val_1 * val_2

Parameters

Notes

Please note that combining different variable types with the "*"opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

See also

+ Addition, - Subtraction, / Division, ^ Power

Example
PAR_1 = 9 * 4 'PAR_1 = 36

val_1 Multiplicator 1. FLOAT

LONG

val_2 Multiplicator 2. FLOAT

LONG

LONG FLOAT

/ Division

ADbasic 5.00, Manual March 2010

ADwin

129

/ Division
The "/" operator divides one value by another.

Syntax

val = val_1 / val_2

Parameters

Notes

Please note that combining different variable types with the "/"opera-
tor will cause a type conversion (see chapter 4.4.2 on page 94). During
conversion from the type into the type rounding dif-
ferences can occur which influence the result.

If the divisor is a variable with a negative sign, you should use braces
to ensure you get the expected result (see also chapter 4.4.1 "Evalua-
tion of Operators" on page 92).

See also

+ Addition, - Subtraction, * Multiplication, ^ Power, Mod

Example
PAR_1 = 36 / 4 'PAR_1 = 9
PAR_2 = 2 / 4 * 5 'PAR_2 = 0 -> integer calculation
PAR_3 = 27 / (-PAR_1) 'PAR_3 = -3
Rem Please note the braces in the last line

val_1 Dividend. FLOAT

LONG

val_2 Divisor. FLOAT

LONG

LONG FLOAT

^ Power

ADbasic 5.00, Manual March 2010

ADwin

130

^ Power
The "^" operator calculates the value of a number raised to a power.

Syntax

val = val_1 ^ val_2

Parameters

Notes

Please note that combining different variable types with the power op-
erator will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

If basis and exponent are variables with even value (but not constants),
the power is nevertheless calculated using Float arithmetic. Large re-
sults therefore show the typical Float inaccuracy with large numbers.

Example:
PAR_2 = 31 ' variable
PAR_1 = 2^PAR_2 ' = 7FFFFFE2h

If the basis and/or the exponent are a variable with a negative sign, you
should use braces to ensure the sign will be considered upon expo-
nentiation (see also chapter 4.4.1 "Evaluation of Operators" on
page 92). This is not necessary with constants.
var1 = -2^2 'var1 = 4
var2 = -var1^2 'var2 = -16
var3 = (-var1)^2 'var3 = 16

Polynoms are calculated quicker, if you reduce powers by factoring out
receiving a multiplication.
y = a + b*x + c*x^2 + d*x^3 +e*x^4 'slower version
y = a + x*(b + x*(c + x*(d + x*e))) 'quicker version

val_1 Basis. FLOAT

LONG

val_2 Exponent. FLOAT

LONG

LONG FLOAT

^ Power

ADbasic 5.00, Manual March 2010

ADwin

131

See also

+ Addition, - Subtraction, * Multiplication, / Division, Exp, LN, Log

Example
PAR_1 = 9 ^ 4 'PAR_1 = 6561

#…, Preprocessor Statement

ADbasic 5.00, Manual March 2010

ADwin

132

#…, Preprocessor Statement
An ADbasic instruction beginning with the "#" sign instructs the preprocessor
to treat the following source code differently. The output of the preprocessor
is further processed by the compiler.
The following preprocessor statements are available:

#DEFINE Definition of symbolic constants: Search and replace
character strings in the source code with other character
strings.

#INCLUDE Include a file: Insert a file (with source code) into the
source code.

#IF…#ENDIF Conditional compilation: If the condition is true the cor-
responding code lines are compiled, otherwise deleted.

: Colon

ADbasic 5.00, Manual March 2010

ADwin

133

: Colon
The sign ":" separates more than one instruction within a single line.

Syntax

[Step_1] : [Step_2] {: [Step_3] …}

Notes

[Step_n] refers to any program instruction as is otherwise indicated
in one individual program line.

A program line must not be longer than 255 characters (exception see
#INCLUDE on page 186).

It is recommend that you use this instruction only when it makes the
source code more clearly-structured.

Example
INC PAR_1 : INC PAR_2
'Increase PAR_1 and PAR_2 in *one* line

=, Assignment

ADbasic 5.00, Manual March 2010

ADwin

134

=, Assignment
The operator "=" assigns the result of the expression on the right side of the
operator to the variable or the array element on the left side of the operator.

Syntax

var = expr

Parameters

Notes

If the data format of the expression is not similar to the data format of
the destination variable or the array, it is converted into the appropriate
data format or the assignment is rejected as illegal. During the conver-
sion rounding differences can occur which influence the result.

Example
DIM val_1, val_2 AS LONG'Declaration

INIT:
val_1 = 69 'Assignment of a constant

EVENT:
val_2 = val_1 * 2 'Assignment of an expression

var Variable or array. VAR

FLOAT

LONG

STRING

expr Expression. FLOAT

LONG

STRING

< = > Comparison

ADbasic 5.00, Manual March 2010

ADwin

135

< = > Comparison
The operators "<", "=" and ">" are used to compare two values. In ADbasic
these operators can only be found in conditional expressions.

Syntax

IF (val_1 > val_2) THEN

Parameters

Notes

The following comparisons are possible:

See also

If … Then … {Else …} EndIf, #If … Then … {#Else … } #EndIf

Example
DIM value AS LONG
EVENT:
value = -5

 IF (value < 0) THEN value = 0
Rem Result: value = 0

val_1 Operand. FLOAT

LONG

val_2 Operand. FLOAT

LONG

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

<> not equal to

AbsF

ADbasic 5.00, Manual March 2010

ADwin

136

AbsF
ABSF provides the absolute value of a Float variable.

Syntax

ret_val = ABSF(value)

Parameters

Notes

The execution time of the function takes 150ns with a T9, 75ns with a
T10, 17ns with a T11.

See also

AbsI

Example
DIM val_1, val_2 AS FLOAT
EVENT:
val_1 = -5.3
val_2 = ABSF(val_1) 'Result: val_2 = 5.3

value Argument. FLOAT

ret_val Absolute value of the argument. FLOAT

AbsI

ADbasic 5.00, Manual March 2010

ADwin

137

AbsI
ABSI provides the absolute value of a long variable.

Syntax

ret_val = ABSI(value)

Parameters

Notes

The execution time of the function takes 75ns with a T9, 50ns with a
T10, 17ns with a T11.

The smallest negative integer value -231 has no positive counterpart in
ADbasic; the absolute value of -231 is therefore undefined.

See also

AbsF, Mod

Example
DIM val_1, val_2 AS LONG

EVENT:
 val_1 = -5
 val_2 = ABSI(val_1) 'Result: val_2 = 5

value Argument: −(231-1) … +231-1. LONG

ret_val Absolute value of the argument (0 … +2-31-1). LONG

And

ADbasic 5.00, Manual March 2010

ADwin

138

And
The operator AND combines two integer values bit by bit or two Boolean
expressions as Boolean operator.

Syntax

var = val_1 AND val_2 'bitwise operator

IF ((expr1) AND (expr2)) THEN 'Boolean operator

Parameters

Notes

With AND you can only combine expressions of the same type (integer
or Boolean) with each other, mixing them is not possible.

You can use Boolean operators only in statements such as IF … THEN
… ELSE or DO … UNTIL (variables cannot have Boolean values).

If you use several Boolean operators in one line, you have to put each
operation into separate parentheses. This is not necessary for combin-
ing integer values.

See also

causes the processor to wait for several processor cyclesNot, Or, XOr

Example
Rem Bitwise operator of long variables
DIM val_1, val_2, val3 AS LONG
val_1 = 0100b '= 4
val_2 = 0110b '= 6
val3 = val_1 AND val_2 'bitwise operator
Rem Result: val3 = 0100b = 4

val_1, val_2 Integer value. LONG

expr1, expr2 Boolean operator with the value "true" or "false". LOGIC

And

ADbasic 5.00, Manual March 2010

ADwin

139

Or:
Rem Boolean operation of Boolean expressions
DIM fval_1 AS FLOAT
DIM val4 AS LONG
fval_1 = 3.14

Rem Boolean operation: (true And true) = true
IF ((fval_1 < 9.1) AND (fval_1 > 3.1)) THEN
val4 = 1

ELSE
val4 = 0

ENDIF 'Result: val4 = 1

ArcCos

ADbasic 5.00, Manual March 2010

ADwin

140

ArcCos
ARCCOS provides the arc cosine of the argument.

Syntax

ret_val = ARCCOS(val)

Parameters

Notes

For val < -1 the value π (3.14159...) is returned, for val > 1 the value
0 (zero).

The execution time of the function takes 2.9µs with a T9, 1.45µs with
a T10, 0.68µs with a T11.

See also

Sin, Cos, Tan, ArcSin, ArcTan

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 0.5
 val_2 = ARCCOS(val_1)
Rem Result: val_2 = 1.0472

val Argument (-1 … +1). FLOAT

ret_val Arc cosine of the argument in radians (0…π). FLOAT

ArcSin

ADbasic 5.00, Manual March 2010

ADwin

141

ArcSin
ARCSIN provides the arc sine of the argument.

Syntax

ret_val = ARCSIN (val)

Parameters

Notes

The execution time of the function takes 2.8µs with a T9, 1.4µs with a
T10, 0.67µs with a T11.

See also

Sin, Cos, Tan, ArcCos, ArcTan

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 0.5
 val_2 = ARCSIN(val_1)
Rem Result: val_2 = 0.5236

val Argument (-1 … +1). FLOAT

ret_val Arc sine of the arguments in radians
(-π/2 … +π/2).

FLOAT

ArcTan

ADbasic 5.00, Manual March 2010

ADwin

142

ArcTan
ARCTAN provides the arc tangent of the argument.

Syntax

ret_val = ARCTAN(val_1)

Parameters

Notes

The execution time of the function takes 1.8µs with a T9, 0.9µs with a
T10, 0.42µs with a T11.

See also

Sin, Cos, Tan, ArcSin, ArcCos

Example
DIM val_1, val_2 AS FLOAT

EVENT:
val_1 = 0.5
val_2 = ARCTAN(val_1)

'Result: val_2 = 0.4636

val_1 Argument (whole range of values, see "Entering
Numerical Values" on page 79).

FLOAT

ret_val Arc tangent of the argument in radians
(-π/2…π/2).

FLOAT

Asc

ADbasic 5.00, Manual March 2010

ADwin

143

Asc
ASC determines the corresponding decimal value for a single ASCII character
or for the first character of a character string.

Syntax

ret_val = ASC(STRING)

Parameters

See also

String "", + String Addition, Chr, FloToStr, Flo40ToStr, LngToStr, Str-
Comp, StrLeft, StrLen, StrMid, StrRight, ValF, ValI

Example
DIM text[10] AS STRING

INIT:
 text="Hello"

EVENT:
 PAR_1=ASC(text) 'PAR_1 = 48h = 72
 PAR_2=ASC("?") 'PAR_1 = 3Fh = 63

String Character string . STRING

ret_val ASCII number (0…255) of the (first) character. LONG

Cast_FloatToLong

ADbasic 5.00, Manual March 2010

ADwin

144

Cast_FloatToLong
CAST_FLOATTOLONG changes the data type of the argument from Float into
Long.

Syntax

ret_val = CAST_FLOATTOLONG(var)

Parameters

Notes

This function does not execute a standard type conversion of a num-
ber (see chapter 4.4.2 "Type Conversion", page 94). Use the operator
"=" for the assignment of a Float value to an integer variable.

This instruction is to be reasonably used in combination with the in-
verse function CAST_LONGTOFLOAT, if there is a bit pattern represent-
ing a Float value but given with data type LONG. Contrary to the data
type the bit pattern will remain unchanged, so it will again be interpret-
ed as the correct Float value (see also chapter 4.2.3 on page 77).

An example of practice appears with data transfer: A CAN- or RSxxx-
bus only transfers 8-bit data packages of data type integer. Therefore,
a 32-bit Float value has to be changed into data type LONG with CAST_
FLOATTOLONG and then divided into 4 separate 8-bit packages. The
receiver has to reassemble the packages again and restore the data
type Float with CAST_LONGTOFLOAT.

See also

Cast_LongToFloat

var Bit pattern with data type long. FLOAT

ret_val Identical bit pattern with data type Float. LONG

Cast_LongToFloat

ADbasic 5.00, Manual March 2010

ADwin

145

Cast_LongToFloat
CAST_LONGTOFLOAT changes the data type of the argument from Long into
Float.

Syntax

ret_val = CAST_LONGTOFLOAT(val)

Parameters

Notes

This function does not execute a standard type conversion of a num-
ber (see chapter 4.4.2 "Type Conversion", page 94). Use the operator
"=" for the assignment of a Float value to an integer variable.

This instruction is to be reasonably used, if there is a bit pattern repre-
senting a Float value but given with data type LONG. Contrary to the
data type the bit pattern will remain unchanged, so it will again be in-
terpreted as the correct Float value (see also chapter 4.2.3 on
page 77).

An example of practice appears with data transfer: A CAN- or RSxxx-
bus only transfers 8-bit data packages of data type integer. Therefore,
a 32-bit Float value has to be changed into data type LONG with CAST_
FLOATTOLONG and then divided into 4 separate 8-bit packages. The
receiver has to reassemble the packages again and restore the data
type Float with CAST_LONGTOFLOAT.

See also

Cast_FloatToLong

val Bit pattern with data type Float. LONG

ret_val Identical bit pattern with data type long. FLOAT

Chr

ADbasic 5.00, Manual March 2010

ADwin

146

Chr
CHR assigns an ASCII character with a specified decimal number to a string
variable.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

CHR(vascii,dest_text)

Parameters

Notes

If a string variable has more than one character (or element), CHR as-
signs the ASCII character only to the first element of the string.

See also

String "", + String Addition, Asc, FloToStr, Flo40ToStr, LngToStr, Str-
Comp, StrLeft, StrLen, StrMid, StrRight, ValF, ValI

Example
IMPORT String.LI9

DIM text_a[1], text_b[1] AS STRING

EVENT:
CHR(13, text_a) 'Carriage Return
CHR(10, text_b) 'Line Feed

vascii Decimal number (0…255) of the desired ASCII charac-
ter.

LONG

dest_text String variable to which the character is assigned. STRING

Cos

ADbasic 5.00, Manual March 2010

ADwin

147

Cos
COS provides the cosine of an angle.

Syntax

ret_val = COS(angle)

Parameters

Notes

If you use input values which are not in the range of -π…+π, the calcu-
lation error grows with the increasing value.

The execution time of the function takes 1.3µs with a T9, 0.7µs with a
T10, 0.31µs with a T11.

See also

Sin, Tan, ArcCos, ArcSin, ArcTan

Example
DIM val_1, val_2 AS FLOAT
EVENT:
val_1 = -5.3
val_2 = COS(val_1) 'Result: val_2 = 0.55…

angle Angle in radians (-π…π). FLOAT

ret_val Cosine of the angle (-1…1). FLOAT

CPU_Sleep

ADbasic 5.00, Manual March 2010

ADwin

148

CPU_Sleep
Processor T11 only: CPU_SLEEP causes the processor to wait for a certain
time.

Syntax

CPU_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions P1_SLEEP and P2_SLEEP (see
also chapter 5.2.4 "Setting Waiting Times Exactly"). For processors up
to T10 use SLEEP.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process CPU_SLEEP cannot be interrupted. Thus,
very high values in high-priority processes can cause an interruption in
the communication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array elements.
• The variable in the argument is declared in the memory area

DRAM_EXTERN. The time interval may vary because it depends on
several conditions.

• The argument is an array.
• The argument is a floating point value.

See also

IO_Sleep, NOP, P1_Sleep, P2_Sleep, Sleep

val Number (9…715827879) of time units to wait in 10ns. LONG

CPU_Sleep

ADbasic 5.00, Manual March 2010

ADwin

149

Example
EVENT:
Rem Wait to start a subsequent measurement exactly 100 µs
Rem after the external Event signal.
CPU_SLEEP(10000)
Rem ...

DATA_n

ADbasic 5.00, Manual March 2010

ADwin

150

DATA_n
The DIM DATA_n[…] AS … instruction dimensions a global DATA array.
More information about dimensing see page 155.

Syntax

DIM DATA_n[dim1] {, DATA_n[dim2]} AS <ARR_TYPE> {AT
<MEM_TYPE>}

DIM DATA_n[dim1]{[dim2]} AS <ARR_TYPE> {AT <MEM_
TYPE>}

Parameters

Notes

You can access the array elements 1…Dim. The array element [0]
must not be used since it is used for internal purpose.

The maximum array size depends on the available physical memory
size of the ADwin system.

A global array may be declared 2-dimensional. The specifics are de-
scribed in chapter 4.3.3 on page 85.

See also

Dim, FIFO, "Global Arrays" on page 80, "Variables and Arrays in the
Data Memory" on page 83

DATA_n Name of the declared DATA array (n: 1…200).

<ARR_TYPE> Data type: FLOAT, LONG, STRING.

dim1, dim2 Array size: Number (≥1)of the array elements of the
type ARR_TYPE.

CONST

LONG

<MEM_TYPE> memory, where the array elements are stored:
DRAM_EXTERN: external data memory (default).
DM_LOCAL: internal data memory (default).
available for T11 only:
EM_LOCAL: extended program or data memory.

DATA_n

ADbasic 5.00, Manual March 2010

ADwin

151

Example
Rem Dimension the global array DATA_15 with
Rem 1000 long elements
DIM DATA_15[1000] AS LONG

Rem Dimension the global array DATA_5 with
Rem 20 x 75 Float elements
DIM DATA_5[20][75] AS FLOAT

Dec

ADbasic 5.00, Manual March 2010

ADwin

152

Dec
DEC decrements the value of aLong-variable by 1.

Syntax

DEC(var)

Parameters

Notes

DEC(var) provides the same result as the program line: val=val-1
and it may have shorter execution time.

See also

Inc, - Subtraction

Example
DIM index AS LONG
DIM DATA_1[1000] AS LONG

INIT:
index=1000

EVENT:
DAC(1,DATA_1[index]) 'Output the value on DAC1
DEC(index) 'Decrement the index by 1
IF (index<1) THEN
index=1000 'Start again after 1000 outputs

ENDIF

var Name of a local or global Long-variable. VAR

CONST

LONG

#Define

ADbasic 5.00, Manual March 2010

ADwin

153

#Define
#DEFINE replaces a symbolic name in the source code with an expression, for
instance a constant.

Syntax

#DEFINE name expression

Parameters

Notes

Place this instruction at the beginning of a source code.

The function #DEFINE is a preprocessor instruction, that means the re-
placement is made when you compile the source code (even before
the compiler generates the program). Use this function in order to use
more descriptive names in the source code instead of constants, pa-
rameters or expressions.

The first string up to a blank is interpreted as symbolic name, the fol-
lowing text until the carriage return is interpreted as an expression to
be inserted1. The expression is inserted exactly as you have defined it;
variable names in the expression are not replaced by their value, but
as a character string.

Neither name nor expression are case-sensitive.

If you want to use a mathematical term for expression, we recom-
mend it be placed in parenthesis to avoid errors (see examples).

See also

#Include

name Symbolic name, without quotation marks.
Special chars are not allowed, only alphanumeric char-
acters (a…z, A…Z, 0…9) and the underscore (_).

CONST

STRING

expression Expression for the symbolic name, without quotation
marks.
All characters are allowed.

CONST

STRING

1. Text behind a comment char "'" will be ignored by the compiler.

#Define

ADbasic 5.00, Manual March 2010

ADwin

154

Example
#DEFINE setpoint PAR_1 'Comments like this are ignored
#DEFINE measured DATA_1
#DEFINE pi 3.141592654

With these instructions you can use the names setpoint, measured
and pi in the source code instead of PAR_1 , DATA_1 and
3.141592654.

#DEFINE setpoint (13 + 4^3)
PAR_1 = 2 * setpoint '= 2 * (13 + 4^3)

Without the parentheses in the #DEFINE expression you would get the
value "90" instead of the expected "154".

Dim

ADbasic 5.00, Manual March 2010

ADwin

155

Dim
DIM declares one or more

– local variables

– local one-dimensional arrays (also strings)

– global one-dimensional arrays DATA_n[n] (also FIFO arrays)

– global two-dimensioned arrays DATA_n[n][m].
Information about variables and data types can be found in chapter 4.2.3,
information about FIFO arrays under the heading FIFO on page 163..

Dim

ADbasic 5.00, Manual March 2010

ADwin

156

Syntax

DIM var1 {, var2, …} AS <VAR_TYPE>

DIM array1[dim1] {, array2[dim2]} AS <VAR_TYPE>
{AT <MEM_TYPE>}

DIM DATA_n[dim1] {, DATA_n[dim2]} AS <VAR_TYPE>
{AS FIFO} {AT <MEM_TYPE>}

DIM DATA_n[dim1][dim2] AS <VAR_TYPE> {AT <MEM_TYPE>}

Parameters

Notes

The global variables PAR_n and FPAR_n must not be declared, be-
cause they are predefined.

If you want to access data from the computer or from several proces-
ses, you can only do this by using global variables and arrays.

In an array you can access the elements 1…Dim. The array element
[0] must not be used, because it is used for internal purposes.
The maximum array size depends on the physical memory on the AD-
win system.

String variables are local arrays of type (see "Strings" on
page 88). They cannot be declared as FIFO.

var1, var2 Names of the declared variables.

array1 ,
array2 ,
DATA_n

Names of the declared arrays. For DATA_n you can sel-
ect n from 1…200.

<VAR_TYPE> Data type: FLOAT, LONG.
for arrays also: STRING.

dim1, dim2 Array size: Number (≥1) of the array elements of the
type VAR_TYPE.

CONST

LONG

<MEM_TYPE> Memory where the variables are stored:
DRAM_EXTERN: external memory (default for arrays).
DM_LOCAL:local memory (default for variables).
available for T11 only:
EM_LOCAL: extended program or data memory.

FLOATLONGSTRING

Dim

ADbasic 5.00, Manual March 2010

ADwin

157

See also

DATA_n, Event:, FIFO, Finish:, Init:, LowInit:, String "", "2-dimensional
Arrays" on page 85, "Variables and Arrays in the Data Memory" on
page 83

Example
Rem Dimension var1 as long variable
DIM var1 AS LONG

Rem Dimension the local array "array1" with 1000 long elements
DIM array1[1000] AS LONG

Rem Dimension the global array DATA_20 with
Rem 1003 Long elements as Fifo
DIM DATA_20[1003] AS LONG AS FIFO

Rem Dimension the array TEXT with
Rem 50 elements as string variable
DIM text[50] AS STRING

Do … Until

ADbasic 5.00, Manual March 2010

ADwin

158

Do … Until
DO…UNTIL repeatedly executes a block of instructions until the Exit condition
evaluates to "true". The block is executed at least one time.

Syntax

DO

… 'Instruction block

UNTIL (condition)

Parameters

See also

< = > Comparison, And, Or, For … To … {Step …} Next, SelectCase

Notes

You can nest DO…UNTIL loops repeatedly; only the available memory
size will limit the number of nested loops.

Avoid loops with long execution times in high-priority processes, be-
cause they cannot be interrupted.

Example
DIM count AS LONG
DIM DATA_1[103] AS LONG AS FIFO

INIT:
count = 1

EVENT:
DO 'Start loop
DATA_1 = ADC(1,4) 'Read out measurement value
INC count 'Increase count variable

UNTIL (count > 103) 'Are 100 measurements being made?

condition Boolean abort condition with the operators <, >, =, AND
and OR.

LOGIC

End

ADbasic 5.00, Manual March 2010

ADwin

159

End
END ends a process in the EVENT: section.

Syntax

END

Notes

END stops the processing of an EVENT: section immediately and starts
processing the section FINISH: (if existing). Any instructions in the
EVENT: section following the END instruction are not processed.

In the other program sections you should use the EXIT instruction in-
stead of END.

See also

Exit, ProcessN_Running, Restart_Process, Start_Process, Start_
Process_Delayed, Stop_Process

Example
EVENT:
IF (ADC(1) > 3000) THEN'Measure and compare
END 'End process, but execute Finish:

ENDIF

FINISH:
SET_DIGOUT(1) 'Set digital output 1

Event:

ADbasic 5.00, Manual March 2010

ADwin

160

Event:
The keyword EVENT: marks the start of the main program section, which is
called every Event signal.

Syntax

EVENT: {AT <MEM_TYPE>}

Parameters

Notes

See also overview of program sections in chapter 4.1.1 on page 74.

The program section EVENT: is the central functional section, which in
a process is called in (typically) regular intervals, until it is stopped. De-
pending on the settings the call is triggered by a cyclic timer Event si-
gnal or by an external Event signal. See more in chapter 6 "Processes
in the ADwin System".

The processor type T11 can store each program section in a different
memory area (see chapter 4.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FIN-
ISH:.

With processor module Pro-CPU T11, the memory area can only be
set starting with revision E04.

See also

Dim, LowInit:, Init:, Finish:

Example
DIM val_1 AS FLOAT

EVENT:
val_1 = -5.3

<MEM_TYPE> T11 only since Rev. E04: memory area, where the pro-
gram section EVENT: is stored.
PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data memory.
DRAM_EXTERN: external data memory.

Exit

ADbasic 5.00, Manual March 2010

ADwin

161

Exit
EXIT ends a process in the sections LOWINIT:, INIT: or FINISH:.

Syntax

EXIT

Notes

EXIT stops the processing of the process and the current program
section immediately; the following program lines in the same section
will not be executed. Even the section FINISH will not be processed.

Use END in the section EVENT:.

See also

End, ProcessN_Running, Reset_Event, Restart_Process, Start_Pro-
cess, Start_Process_Delayed, Stop_Process

Example
INIT:
IF (ADC(1) > 3000) THEN 'Measure and compare
SET_DIGOUT(0) 'Set digital output
EXIT 'End this process

ENDIF

Exp

ADbasic 5.00, Manual March 2010

ADwin

162

Exp
EXP calculates the power to the base e of the argument.

Syntax

ret_val = EXP(val)

Parameters

Notes

The execution time of the function takes 1.3µs with a T9, 0.7µs with a
T10, 0.31µs with a T11.

See also

LN, Log

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 5
 val_2 = EXP(val_1) 'Result: val_2 = 148.41…

val Argument. FLOAT

ret_val Exponential value of the argument to the base e. FLOAT

FIFO

ADbasic 5.00, Manual March 2010

ADwin

163

FIFO
The DIM DATA_n AS FIFO instruction defines a global DATA array as a ring
buffer.

Syntax

DIM DATA_n[Dim] AS <ARR_TYPE> AS FIFO

Parameters

Notes

Once a DATA array is defined as FIFO ring buffer (see also
chapter 4.3.3 on page 85), it cannot be used as a "normal" array.

FIFO arrays (first in, first out) are managed by data pointers. After di-
mensioning the array you should initialize these data pointers with
FIFO_CLEAR, in the section LOWINIT: or INIT:. The data in the
FIFO are not changed neither by dimensioning the array nor by initial-
izing.

If you write data into a FIFO array faster than you read it, older stored
data will be overwritten and are lost. To avoid this you can use the in-
structions FIFO_EMPTY and FIFO_FULL to determine the amount of
space in the array.

If (with processor T11 only) the array size is set to a non-ValId array
size Dim, the FIFO array is automatically dimensioned using the next
greater and ValId array size. As an example the compiler will change
an array size [1000] automatically to [1003].

See also

Dim, DATA_n, FIFO_Clear, FIFO_Empty, FIFO_Full

DATA_n Name of the declared DATA-field (n: 1…200).

<ARR_TYPE> Defined variable type: FLOAT, LONG.

Dim Array size: Number of elements of type
ARR_TYPE in the array.
With processor T11 the range for Dim it be set
in steps of 4 only:
Dim = 4 × a + 3; a ≥ 0.

FIFO

ADbasic 5.00, Manual March 2010

ADwin

164

Example
Rem Dimension the global array DATA_20 with
Rem 1003 Long elements as fifo ringbuffer
DIM DATA_20[1003] AS LONG AS FIFO

FIFO_Clear

ADbasic 5.00, Manual March 2010

ADwin

165

FIFO_Clear
FIFO_CLEAR initializes the write and read pointers of a FIFO array.

Syntax

FIFO_CLEAR(arraynum)

Parameters

Notes

Initalization of the write and read pointers does not change the data in
the the array.

The FIFO pointers are not initialized upon dimensioning. You should
initialize the pointers in the sections LOWINIT: or INIT: with FIFO_
CLEAR.

Initializing the FIFO pointers during program run is useful, if you want
to clear all data of the array (because of a measurement error for in-
stance).

See also

FIFO, FIFO_Empty, FIFO_Full

arraynum Number of the DATA-FIFO array (1…200). LONG

FIFO_Clear

ADbasic 5.00, Manual March 2010

ADwin

166

Example
DIM DATA_1[20003] AS LONG AS FIFO 'Declaration
DIM reinit_fifo_flag AS LONG

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
Rem Query the number of empty places in the FIFO array
IF (FIFO_EMPTY(1) > 1) THEN
Rem Measure the analog input 1 and save it in the FIFO
DATA_1 = ADC(1)

ENDIF
.
. 'Program Text
.
IF (reinit_fifo_flag) THEN 'e.g. error occurred
FIFO_CLEAR(1) 'Initialize the FIFO pointer

ENDIF

FIFO_Empty

ADbasic 5.00, Manual March 2010

ADwin

167

FIFO_Empty
FIFO_EMPTY determines the number of empty elements in a FIFO array.

Syntax

ret_val = FIFO_EMPTY(arraynum)

Parameters

Notes

If you want to write data into a FIFO array, you can use this instruction,
to determine if the FIFO still has enough empty elements.

With processor T11, please note dimensioning in steps of 4 (see
page 163).

See also

FIFO, FIFO_Clear, FIFO_Full

Example
DIM DATA_1[20003] AS LONG AS FIFO'Declaration

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
Rem Query the number of empty elements in the FIFO array
IF (FIFO_EMPTY(1) > 1) THEN
Rem Measure the analog input 1 and save it in the FIFO
DATA_1 = ADC(1)

ENDIF

arraynum Number of the DATA-FIFO-array (1…200). LONG

ret_val Number of the empty array elements. LONG

FIFO_Full

ADbasic 5.00, Manual March 2010

ADwin

168

FIFO_Full
FIFO_FULL determines the number of elements used in the FIFO array.

Syntax

ret_val = FIFO_FULL(arraynum)

Parameters

Notes

Before reading out or using data from the FIFO array, you should use
this instruction, to check if there is data in the FIFO. If there is no data
an undefined value is returned from the FIFO array.

With processor T11, please note dimensioning in steps of 4 (see
page 163).

See also

FIFO, FIFO_Clear, FIFO_Empty

Example
DIM DATA_1[20000] AS LONG AS FIFO 'Declaration

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
Rem Query if there are data in the FIFO
IF (FIFO_FULL(1) > 0) THEN
Rem Output a FIFO value on the analog output 1
DAC(1, DATA_1)

ENDIF

arraynum Number of the DATA-FIFO-array (1…200). LONG

ret_val Number of the occupied array elements (0…Dim). LONG

Finish:

ADbasic 5.00, Manual March 2010

ADwin

169

Finish:
The key word FINISH: marks the start of the finishing program section. The
program section always has low-priority, level 1.

Syntax

FINISH: {AT MEM_TYPE}

Parameters

Notes

See also overview of program sections in chapter 4.1.1 on page 74.

The program section FINISH: is run once as soon as the process is
stopped.

After having processed the last instruction in the FINISH: section, the-
re will be a certain delay until the process status "stopped" is valid.

The processor type T11 can store each program section in a different
memory area (see chapter 4.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FIN-
ISH:.

With processor module Pro-CPU T11, the memory area can only be
set starting with revision E04.

See also

Dim, LowInit:, Init:, Event:, ProcessN_Running

Example
DIM val_1 AS FLOAT

FINISH:
val_1 = -5.3

<MEM_TYPE> T11 only since Rev. E04: memory area, where the pro-
gram section EVENT: is stored.
PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data mem-

ory.DRAM_EXTERN: external data memory.

FloToStr

ADbasic 5.00, Manual March 2010

ADwin

170

FloToStr
FLOTOSTR converts a floating point value into a character string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FLOTOSTR(val, String[])

Parameters

Notes

The length of the returned string varies from 11 to 13 characters, de-
pending on the sign of mantissa and exponent.

See also

Asc, Chr, Flo40ToStr, LngToStr, String "", StrComp, StrLeft, StrLen,
StrMid, StrRight, ValF, ValI

val Value to be converted. FLOAT

String[] String in the format:
{-}#.######E{-}##.

ARRAY

STRING

FloToStr

ADbasic 5.00, Manual March 2010

ADwin

171

Example
IMPORT String.LI9 'String library for the T9

DIM text[13] AS STRING
DIM pi, number AS FLOAT

INIT:
pi = 3.141592654
FPAR_1 = -pi^-20

EVENT:
Rem Convert a floating point number into a string
FLOTOSTR(FPAR_1, text)
PAR_1 = text[1] 'String length = 13
PAR_2 = text[2] 'ASCII character 2Dh = "-"
PAR_3 = text[3] 'ASCII character 31h = "1"
PAR_4 = text[4] 'ASCII character 2Eh = "."
PAR_5 = text[5] 'ASCII character 31h = "1"
PAR_6 = text[6] 'ASCII character 34h = "4"
PAR_7 = text[7] 'ASCII character 30h = "0"
PAR_8 = text[8] 'ASCII character 32h = "2"
PAR_9 = text[9] 'ASCII character 35h = "5"
PAR_10 = text[10] 'ASCII character 35h = "5"
PAR_11 = text[11] 'ASCII character 45h = "E"
PAR_12 = text[12] 'ASCII character 2Dh = "-"
PAR_13 = text[13] 'ASCII character 31h = "1"
PAR_14 = text[14] 'ASCII character 30h = "0"
PAR_15 = text[15] 'String end character = 0

Flo40ToStr

ADbasic 5.00, Manual March 2010

ADwin

172

Flo40ToStr
Processor T11 only: FLO40TOSTR converts a floating point value into a char-
acter string.

Syntax

IMPORT String.LI* '*.LIB for T11

FLO40TOSTR(val, String[])

Parameters

Notes

The length of the returned string varies from 13 to 15 characters, de-
pending on the sign of mantissa and exponent.

See also

Asc, Chr, FloToStr, LngToStr, String "", StrComp, StrLeft, StrLen, Str-
Mid, StrRight, ValF, ValI

val Value to be converted. FLOAT

String[] String in the format:
{-}#.########E{-}##.

ARRAY

STRING

Flo40ToStr

ADbasic 5.00, Manual March 2010

ADwin

173

Example
IMPORT String.LIB 'String library for T11

DIM text[15] AS STRING
DIM pi, number AS FLOAT

INIT:
pi = 3.141592654
FPAR_1 = -pi^-20

EVENT:
Rem Convert a floating point number into a string
FLO40TOSTR(FPAR_1, text)
PAR_1 = text[1] 'String length = 13
PAR_2 = text[2] 'ASCII character 2Dh = "-"
PAR_3 = text[3] 'ASCII character 31h = "1"
PAR_4 = text[4] 'ASCII character 2Eh = "."
PAR_5 = text[5] 'ASCII character 31h = "1"
PAR_6 = text[6] 'ASCII character 34h = "4"
PAR_7 = text[7] 'ASCII character 30h = "0"
PAR_8 = text[8] 'ASCII character 32h = "2"
PAR_9 = text[9] 'ASCII character 35h = "5"
PAR_10 = text[10] 'ASCII character 35h = "6"
PAR_11 = text[11] 'ASCII character 35h = "4"
PAR_12 = text[12] 'ASCII character 35h = "7"
PAR_13 = text[13] 'ASCII character 45h = "E"
PAR_14 = text[14] 'ASCII character 2Dh = "-"
PAR_15 = text[15] 'ASCII character 31h = "1"
PAR_16 = text[16] 'ASCII character 30h = "0"
PAR_17 = text[17] 'String end character = 0

For … To … {Step …} Next

ADbasic 5.00, Manual March 2010

ADwin

174

For … To … {Step …} Next
The FOR…NEXT instruction creates a program loop which executes a speci-
fied number of times.

Syntax

FOR i = X TO Y {STEP Z}

… 'instruction block

NEXT i

Parameters

Notes

The instruction block is executed at least once, even if the start value
X is greater than the end value Y.

Declare the count variable as LONG variable.

A high priority process cannot be interrupted by another process,
which is also true while executing a time intensive FOR...NEXT loop.
Since the ADwin system cannot respond to other events in this time, it
is important to keep the number of loops small for high priority proces-
ses.

See also

Do … Until, If … Then … {Else …} EndIf, SelectCase

i Count variable. LONG

X Start value of the run variable. LONG

Y End value of the run variable. LONG

Z Step length (≥1) of the run variable; default: 1. LONG

For … To … {Step …} Next

ADbasic 5.00, Manual March 2010

ADwin

175

Example
DIM index AS LONG
DIM sinus[360] AS FLOAT'Array for sine values
DIM pi AS FLOAT

INIT:
pi = 3.14159
Rem Calculate the sine values in degrees (0° to 359°)
FOR index = 1 TO 360
sinus[index] = (2047*SIN((index - 1) * 2*pi/360))

NEXT index
index = 1 'Initialize the count index

EVENT:
DAC(1, sinus[index]) 'Output the amplitude value
INC index 'Increase the count index
Rem From 360 degrees onward, restart at 0
IF (index > 360) THEN index = 1

Function … EndFunction

ADbasic 5.00, Manual March 2010

ADwin

176

Function … EndFunction
FUNCTION…ENDFUNCTION is used to define a function macro with passed
and returned values.

Syntax

FUNCTION macro_name({val_1, val_2, …}) AS <VAR_TYPE>

{DIM var AS <VAR_TYPE>}

… 'instruction block

macro_name = … 'assign return value

ENDFUNCTION

Parameters

Notes

You will find general information about macros in chapter 4.5.1 on
page 96.

This instruction defines a function macro, which means that the whole
instruction block between FUNCTION and ENDFUNCTION is inserted
any place where the macro is called.

Functions help to make your source code more clearly-structured.
Please note that each function call will increase the size of the com-
piled file.

macro_name Name of the function and of the return value, data type
<VAR_TYPE>.

val_1, val_2 Names of passed parameters;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

FLOAT

LONG

STRING

<VAR_TYPE> Data type of the function and the return parameter:
FLOAT or LONG, but not STRING.

Function … EndFunction

ADbasic 5.00, Manual March 2010

ADwin

177

You may insert functions at the following 3 locations:

1. Before the section INIT:/LOWINIT:

2. After the section FINISH:

3. In a separate file which you Include with #INCLUDE (only in loca-
tions described in 1. and 2.).

Please note the following when defining functions:
• no process sections such as LOWINIT:, INIT:, EVENT:, or

FINISH: can be defined.
• local variables can be defined at the beginning, which are only

available in the function and for the processing period.
This is true even when a variable has the same name as a variable
outside of the function.

• a value should be assigned to the function name, which will be the
returned value for the function in the source code.

A function is called with its name and with the arguments you have de-
fined; the function must be used as argument in the calling program li-
ne, e.g. in an assignment (see example). All expression types
(including one- and two-dimensional arrays) are allowed as argu-
ments, as long as they have the appropriate data type.
If you don’t define arguments you neverthelesse have to use the (em-
pty) braces for the function’s call: name().

If an array is used as a passed parameter the syntax is different for call
and definition:

• call of function without dimension brackets:
ret_val=name(array_pass)

• definition of function with dimension brackets:
FUNCTION name(array_def[]) …

Values are assigned to elements of passed arrays as usual:
array_def[2] = value

If a value is assigned to a passed parameter x within the function, the
function’s call must not use a constant x, but a variable or a single array
element. If so, a passed parameter can be used to hold a return value.

If a passed parameter is part of an expression inside a function the pa-
rameter should be set in braces. This avoids problems with the order
of operator evaluation.

Function … EndFunction

ADbasic 5.00, Manual March 2010

ADwin

178

See also

#Include, Sub … EndSub, Lib_Function … Lib_EndFunction, Lib_Sub
… Lib_EndSub

Example
FUNCTION average(w1, w2, w3) AS FLOAT
Rem The function calculates the mean of the values
Rem w1, w2 und w3
DIM sum AS FLOAT
sum = w1 + w2 + w3
average = sum/3

ENDFUNCTION

Calling the function e.g. is done by the following program lines:
x = average(x1, x2, x3)
DAC(1,average(x1, x2, x3))

The same function with an array as passed parameter:
FUNCTION average_array(array[]) AS FLOAT
average_array=(array[1] + array[2] + array[3])/3

ENDFUNCTION

Calling this function is made in a similar manner (but without dimension
brackets):
x = average_array(array)
DAC(1,average_array(array))

For array you can indicate a global or a local array. Enter the array
name only, without element number and brackets.

If … Then … {Else …} EndIf

ADbasic 5.00, Manual March 2010

ADwin

179

If … Then … {Else …} EndIf
The IF…THEN control structure is used to conditionally execute a single
instruction (IF…THEN…) or a block of instructions (IF … THEN … ELSE …
ENDIF).

Syntax

IF (condition) THEN

… 'Instruction block

{ELSE 'the Else-block is optional

… 'Instruction block }

ENDIF

or

IF (condition) THEN instr

Parameters

Notes

You can nest IF structures repeatedly; only limited by the available
memory.

The instruction block after ELSE (if there is one) is executed faster than
the one after IF…THEN. This can be used to speed up the total exe-
cution time of the EVENT:section, by putting the condition that has
most common state, int ehe ELSE statement, for instance when you
check if limit values are exceeded.

In the single-line version, the instruction cannot call a subroutine macro
(SUB) nor a function macro (FUNCTION).

See also

< = > Comparison, And, Or, Do … Until, SelectCase

condition Boolean condition with the operators <, >, =, AND and
OR.
If the condition is "true" the instructions after THEN are
executed.

LOGIC

instr Instruction (corresponds to an instruction line).

If … Then … {Else …} EndIf

ADbasic 5.00, Manual March 2010

ADwin

180

Example
DIM val AS LONG 'Declaration

EVENT:
val = ADC(1) 'Acquire measurement value

IF (val > 3000) THEN 'Limit value is exceeded:
CLEAR_DIGOUT(1) 'Reset DIGOUT 1
SET_DIGOUT(0) 'Set DIGOUT 0

ELSE 'Limit value is not exceeded:
CLEAR_DIGOUT(0) 'Reset DIGOUT 0
SET_DIGOUT(1) 'Set DIGOUT 1

ENDIF 'End of control structure

#If … Then … {#Else … } #EndIf

ADbasic 5.00, Manual March 2010

ADwin

181

#If … Then … {#Else … } #EndIf
This preprocessor structure is used to conditionally compile a block of instruc-
tions (#IF…THEN…#ELSE…#ENDIF).

Syntax

#IF condition THEN

… 'instruction block

{#ELSE 'the Else-block is optional

… 'instruction block}

#ENDIF

Parameters

Notes

The condition may only use the operator "="; neither Boolean conditi-
ons using AND and OR nor bracing is allowed. You can nest IF struc-
tures repeatedly; only limited by the available memory.

condition Boolean condition (no braces or quotation marks) of the
form:
<SYSPAR> = value

If the condition is "true" the instructions after THEN are
executed.
The system parameter <SYSPAR> and the correspon-
ding value are shown in the table below:

LOGIC

<SYSPAR> value Meaning

ADWIN_
SYSTEM

ADWIN_CARD
ADWIN_GOLD
ADWIN_GOLDII
ADWIN_L16
ADWIN_PRO
ADWIN_PROII

"System" setting in the window
"Compiler Options".

PROCESSOR T9
T10
T11

"Processor" setting in the win-
dow "Compiler Options".

#If … Then … {#Else … } #EndIf

ADbasic 5.00, Manual March 2010

ADwin

182

There is no single-line version as with IF…THEN.

When calling the compiler via Command Line Calling (see page A-7)
the system parameters refer to the command line options /Sx and
/Px.

See also

< = > Comparison, If … Then … {Else …} EndIf

Example
Rem set low priority Processdelay to 800µs
#IF PROCESSOR = T11 THEN 'If CPU = T11
Rem T11: 800µs = 240000 x 3,3ns
PROCESSDELAY = 240000

#ELSE
#IF PROCESSOR = T10 THEN 'If CPU = T10
Rem T10: 800µs = 16 x 50µs
PROCESSDELAY = 16

#ELSE 'other CPU, here: CPU = T9
Rem T9: 800µs = 8 x 100µs (also other CPUs)
PROCESSDELAY = 8

#ENDIF
#ENDIF

Import

ADbasic 5.00, Manual March 2010

ADwin

183

Import
IMPORT includes functions and subroutines from the specified library file dur-
ing compilation.

Syntax

IMPORT {path}file

Parameters

Notes

General information about include files to be found in chapter 4.5.2 on
page 97.

Insert IMPORT instructions at the beginning of your source code (befo-
re you declare the variables). If you Import several library files in a pro-
gram, you have to also IMPORT the files in any functions you call that
use these instructions.

Only those functions and subroutines which you call in your source
code are imported from the library file.

If the path name misses, only the standard directory is searched (see
Options Menu, Directory, page 47). Use the back slash "\" in the path
name to separate directory names.

The base directory for relative paths is–if the source code is member
of a project–the directory of the project file, otherweise the directory of
the source code file.

The following library files are delivered with ADbasic:

file File name of the library file without quotes. The file
extension is
.LI9 for T9, .LIA for T10, .LIB for T11.

CONST

STRING

path Path name of the library file (with drive), without quotes. CONST

STRING

String.li9,
String.liA,
String.liB

String instructions for T9, T10 and T11
processors.

Import

ADbasic 5.00, Manual March 2010

ADwin

184

See also

#Include, Lib_Function … Lib_EndFunction, Lib_Sub … Lib_EndSub

Example
Rem import the string library for the T9 processor
IMPORT String.LI9
Rem import a user library for the T10 processor
IMPORT C:\MyFiles\ADwinLibs\dig2volt.LIA

You will find an overview of the register addresses (Gold and Light-16)
in your hardware documentation.

FFT.li9, FFT.liA,
FFT.liB

FFT instructions for T9, T10 and T11 pro-
cessors.

Inc

ADbasic 5.00, Manual March 2010

ADwin

185

Inc
INC increments the value of a local or global integer variable by one.

Syntax

INC(var)

Parameters

Notes

INC(val) is equivalent the program line: val=val+1 and it may have
shorter execution time.

See also

Dec, + Addition

Example
DIM index AS LONG
DIM DATA_1[1000] AS LONG

INIT:
index=1

EVENT:
DATA_1[index] = ADC(1)'Transfer the measurement value into

'the array
INC(index) 'Increment index by 1
IF (index>1000) THEN END 'End the program after

'1000 measurements

var Name of a local or global Long-variable. VAR

CONST

LONG

#Include

ADbasic 5.00, Manual March 2010

ADwin

186

#Include
#INCLUDE includes all the contents of an include file into the source code.

Syntax

#INCLUDE {path}filename

Parameters

Notes

You find general information about include files in chapter 4.5.2 on
page 97.

Insert the #INCLUDE instructions at the beginning of your source code
(before you declare the variables). You can import other include files in
the source code of an include file.

If any include file uses library functions, you have also to Include the
corresponding library files with IMPORT.

If the path name misses, only the standard directory is searched (see
Options Menu Directory, page 47). Use the back slash "\" in the path
name to separate directory names.

The base directory for relative paths is–if the source code is member
of a project–the directory of the project file, otherweise the directory of
the source code file.

To include any of the include files delivered with ADbasic–the files con-
tain instruction to access hardware I/Os–you enter the first characters
of the instruction #INCLUDE, press [CTRL][SPACE] and select the re-
quired include file from the list. Alternatively use one of the code snip-
pets from the "Hardware" group.

Please note: A program line with an #INCLUDE instruction should not
exceed 136 characters (maximum length for other lines see

filename Name of the file to be included (with the extension
.Inc), without quotes.

CONST

STRING

path Complete path with drive, or relative path. CONST

STRING

#Include

ADbasic 5.00, Manual March 2010

ADwin

187

page 133). Any further character of this line will not be processed by
the compiler.

See also

#Define, Import, Function … EndFunction, Sub … EndSub

Example
Rem find file in the given directory
#INCLUDE C:\Test\demofunc.Inc

Rem find file in standard directory
#INCLUDE demofunc.Inc

Rem relative path.
Rem The base directory is relative to the directory of the
Rem project file (if the source file is member of a project).
Rem If the source code is not a project member, the base
Rem directory is the directory of the source file.
#INCLUDE .\demofunc.Inc

Init:

ADbasic 5.00, Manual March 2010

ADwin

188

Init:
The keyword INIT: marks the start of the initializing program section.

Syntax

INIT: {AT <MEM_TYPE>}

Parameters

Notes

See also overview of program sections in chapter 4.1.1 on page 74.

The program section INIT: is run once as soon as the process is star-
ted and (if existing) the program section LOWINIT: is finished. The
delay between having processed the last instruction of the INIT: sec-
tion and starting the EVENT: section is about 1 × PROCESSDELAY.

The program section has the priority as set for the process (menu entry
"Options / Process"). With high priority the section cannot be inter-
rupted and should then be as short as possible.

The processor type T11 can store each program section in a different
memory area (see chapter 4.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FIN-
ISH:.

With processor module Pro-CPU T11, the memory area can only be
set starting with revision E04.

See also

Dim, LowInit:, Event:, Finish:

Example
DIM val_1 AS FLOAT
INIT:
val_1 = -5.3

<MEM_TYPE> T11 only since Rev. E04: memory area, where the pro-
gram section EVENT: is stored.
PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data mem-

ory.DRAM_EXTERN: external data memory.

IO_Sleep

ADbasic 5.00, Manual March 2010

ADwin

189

IO_Sleep
IO_SLEEP causes instructions for access to inputs and outputs of a Gold II
system to wait for a certain time.

Syntax

IO_SLEEP(val)

Parameters

Notes

Alternatively, there is the instruction CPU_SLEEP (see also
chapter 5.2.4 "Setting Waiting Times Exactly").

The instruction IO_SLEEP is used to wait a defined time between 2 ac-
cesses to inputs/outputs. The total waiting time is the sum of the pro-
cessing time for the I/O access and the waiting time by IO_SLEEP.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In high-priority processes, improper values can cause an interruption
in the communication to the PC:

• Make sure, that the argument always has a value greater than 12;
else very long waiting times can arise.

• Use very high values with care, because the communication to the
PC is interrupted for a long time (danger of timeout).

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array elements.
• The variable in the argument is declared in the memory area

DRAM_EXTERN. The time interval may vary because it depends on
several conditions.

• The argument is an array.
• The argument is a floating point value.

val Number (12, 14, …n) of time units to wait in 10ns.
Only even numbers are valid. An invalid number will
automatically be decreased by 1.

LONG

IO_Sleep

ADbasic 5.00, Manual March 2010

ADwin

190

See also

CPU_Sleep, NOP

Example
#INCLUDE ADwinGoldII.inc

EVENT:
SET_MUX1(11010b) 'Mux 1: Set channel and gain
IO_SLEEP(200) 'wait 2 µs (=200*10ns)

'= max. MUX settling time
START_CONV(1) 'start conversion of ADC1
Rem ...

Lib_Function … Lib_EndFunction

ADbasic 5.00, Manual March 2010

ADwin

191

Lib_Function … Lib_EndFunction
With LIB_FUNCTION…LIB_ENDFUNCTION a function with passed and
return parameters is defined in a library file.

Syntax

LIB_FUNCTION lib_name(<LIB_PAR1> {, <LIB_PAR2>, …})
AS <FCT_TYPE>

{DIM var AS <VAR_TYPE>}

{#DEFINE name expression}

 … 'Instruction block

name = …

LIB_ENDFUNCTION

Syntax of passed parameters <LIB_PAR>::
<BY_TYPE> var_name AS <VAR_TYPE> {AT <MEM_TYPE>}

Lib_Function … Lib_EndFunction

ADbasic 5.00, Manual March 2010

ADwin

192

Parameters

Notes

You will find general information about library files in chapter 4.5.3 on
page 97.

Generate library functions (and library subroutines) in a separate
source code file. The compilation with "Build/Make lib file" cre-
ates the library file. With IMPORT those library modules are included
into a process which are being called in the process.

In a library function you
• can declare and use local variables and arrays (only one-

dimensional).
Declare variables always at the beginning of the subroutine, but
never outside.

• can use global variables and arrays which are passed as
parameters.

• can process one-dimensional arrays only.
You can pass two-dimensional arrays as parameters, but they will

lib_name Name of the library function and of the return value;
data type <FCT_TYPE>.

<FCT_TYPE> Data type: FLOAT, LONG.

var_name Name of a passed parameter inside of library function;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

<BY_TYPE>
Methods for the transfer of parameters:
BYREF: pass reference (pointer) to variable or array.
BYVAL: pass value only.

<VAR_TYPE> Data type: FLOAT, LONG, STRING.

<MEM_TYPE>

Useful for processor T10 only: Type of memory, where
the passed parameters are stored; to be used only
with arrays:
DRAM_EXTERN: external memory.
DM_LOCAL:local memory.

Lib_Function … Lib_EndFunction

ADbasic 5.00, Manual March 2010

ADwin

193

be considered as one-dimensional arrays in the function (see also
chapter 4.3.3 on page 85).

• should assign a value to the function name, which will be the value
returned for the function in the source code.

• cannot define process sections such as LOWINIT:, INIT:,
EVENT:, or FINISH:.

• cannot call a library function or subroutine from the same library
file.
If necessary you have to put the function, which is to be called, into
a new library file and Import it from there.

• cannot use SELECTCASE.

There are 2 methods for passing parameters that differ as follows:
• BYREF: The library function can change the parameter, so that the

changed value is available in the program (the address of the
parameter is transferred).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter remains the
same for the program that calls the function.

Passed parameters should always be declared AT <MEM_TYPE>, to
save valuable processor time (<MEM_TYPE> must fit with the declara-
tion of the passed parameters in the calling program, see DIM). If not,
the library function has to detect the parameter’s memory type at run
time.

If an array is passed as parameter, the syntax for definition and call dif-
fers:

• Definition of the library function’s parameter with brackets: LIB_
FUNCTION funcname (… array[] …)

• Call with the parameter without brackets:
ret_val=funcname(… array …)

If arrays are used as passed parameters always define them as BYREF
and without indicating any array size. You cannot use FIFO arrays as
passed parameters.

See also

Lib_Sub … Lib_EndSub, Import, Function … EndFunction, Sub …
EndSub

Lib_Function … Lib_EndFunction

ADbasic 5.00, Manual March 2010

ADwin

194

Example
'---------- Calculate a mean value ----------
LIB_FUNCTION average(BYREF array[] AS LONG, BYVAL ptr AS LONG,

BYVAL cnt AS LONG) AS LONG
DIM i AS LONG
average = 0
IF (cnt > 0) THEN
FOR i = ptr TO (ptr + cnt)
average = average + array[i]

NEXT i
average = average / cnt

ENDIF
LIB_ENDFUNCTION

Calling the library function average is illustrated in the following example, a
"moving average filter":

Rem Import the library 'MEAN'
IMPORT C:\MyFiles\ADwinLibs\MEAN.LI9
#DEFINE cnt 10 'Number of the samples
#DEFINE samples DATA_1 'Number of measm. values
#DEFINE filtered DATA_2'Number of filtered measm.

'values
#DEFINE length 1000 'Length of the array
DIM samples[length] AS LONG'Source array
DIM filtered[length] AS LONG'Destination array
DIM i AS LONG 'Count variable

INIT:
i = 1 'Initialize the count variable
PROCESSDELAY = 40000 'Measurement with 1 kHz

EVENT:
samples[i] = ADC(1) 'Measure and save analog values
INC i 'Increment count variable
IF (i> length) THEN END'Are 1000 measurements complete?

'If yes: process Finish

FINISH:
FOR i = 1 TO (length - cnt)'For all measm. values
Rem Call library function "average"
filtered[i + cnt] = average(samples,i,cnt)
Rem Note the call with the passed array 'samples'
Rem *without* dimension brackets

NEXT i

Lib_Sub … Lib_EndSub

ADbasic 5.00, Manual March 2010

ADwin

195

Lib_Sub … Lib_EndSub
The LIB_SUB…LIB_ENDSUB is used to define a subroutine with passed
parameters in a library file.

Syntax

LIB_SUB lib_name(<LIB_PAR1> {, <LIB_PAR2>, …})

{DIM var AS <VAR_TYPE>}

{#DEFINE name expression}

… 'Instruction block

LIB_ENDSUB

Syntax of passed parameters <LIB_PAR>:
<BY_TYPE> var_name AS <VAR_TYPE> {AT <MEM_TYPE>}

Parameters

Notes

You will find general information about library files in chapter 4.5.3 on
page 97.

lib_name Name of the library subroutine.

var_name Name of a passed parameter inside of library Sub;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

<BY_TYPE>
Methods for the transfer of parameters:
BYREF: pass reference (pointer) to variable and array.
BYVAL: pass value only.

<VAR_TYPE> Data types: FLOAT, LONG, STRING.

<MEM_TYPE>

Useful for processor T10 only: Type of memory, where
the passed parameters are stored; to be used only
with arrays:
DRAM_EXTERN: external memory.
DM_LOCAL:local memory.

Lib_Sub … Lib_EndSub

ADbasic 5.00, Manual March 2010

ADwin

196

Generate library subroutines (and library functions) in a separate
source code file. The compilation with "Build/Make lib file" cre-
ates the library file. With IMPORT those library modules are included
into a process which are being called in the process.

In a library subroutine you can
• declare and use local variables and arrays (only one-dimensional).

Declare variables always at the beginning of the subroutine, but
never outside.

• use global variables and arrays which are passed as parameters.
• process one-dimensional arrays only.

You can pass two-dimensional arrays as parameters, but they will
be considered as one-dimensional arrays in the function (see also
chapter 4.3.3 on page 85).

• cannot define process sections such as LOWINIT:, INIT:,
EVENT:, or FINISH:.

• cannot call a library function or subroutine from the same library
file.
If necessary you have to put the function, which is to be called, into
a new library file and Import it from there.

• cannot use SELECTCASE.

There are 2 methods for passing parameters that differ as follows:
• BYREF: The library function can change the parameter, so that the

changed value is available in the program (the method transfers the
address of the parameter).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter remains the
same for the program that calls the function.

Refers to processor T10 only: Passed parameters should always be
declared AT <MEM_TYPE>, to save valuable processor time (<MEM_
TYPE> must fit with the declaration of the passed parameters in the
calling program, see DIM). If not, the library subroutine has to detect
the parameter’s memory type at run time.

If an array is passed as parameter, the syntax for definition and call dif-
fers:

• Definition of the library subroutine’s parameter with brackets: LIB_
SUB subname (… array[] …)

• Call with the parameter without brackets:
subname(… array …)

Lib_Sub … Lib_EndSub

ADbasic 5.00, Manual March 2010

ADwin

197

If arrays are used as passed parameters always define them as BYREF
and without indicating any array size. You cannot use FIFO arrays as
passed parameters.

See also

Lib_Function … Lib_EndFunction, Import, Function … EndFunction,
Sub … EndSub

Example:
Rem Measurement value conversion from Digits(0…65535)
Rem to Volt(±10V)
LIB_SUB dig2volt(BYREF digit[] AS LONG, BYVAL ptr AS LONG,

BYVAL cnt AS LONG, BYVAL gain AS LONG,
BYREF volt[] AS FLOAT)

DIM i AS LONG
FOR i = ptr TO (ptr + cnt)
volt[i] = ((digit[i] * 20 / 65536) - 10) / gain

NEXT i
LIB_ENDSUB

Lib_Sub … Lib_EndSub

ADbasic 5.00, Manual March 2010

ADwin

198

Calling the library function dig2volt is illustrated in the following example, a
conversion of measurement values:

Rem The library 'DIG2VOLT' is imported
IMPORT C:\MyFiles\ADwinLibs\DIG2VOLT.LI9

#DEFINE cnt 1000 'Number of the samples
#DEFINE ptr 1 'Start point of the samples which are

'to be converted
#DEFINE gain 1 'Gain of the PGA
#DEFINE samples DATA_1 'Memory for measurement values
#DEFINE scaled DATA_2 'Memory for converted measurement

'values
#DEFINE length 1000 'Length of the array

DIM samples[length] AS LONG'Source array
DIM i AS LONG 'Count variable

INIT:
i = 1 'Initialize the count variable
PROCESSDELAY = 40000 'Measurement with 1 kHz

EVENT:
samples[i] = ADC(1) 'Measure and save analog values
 INC i 'Increment count variable
 IF (i> length) THEN END'Are 1000 measurements being made?

'If yes: process Finish

FINISH:
Rem Convert the measurement values by
Rem calling the library subroutine 'dig2volt'
dig2volt(samples,ptr,cnt,gain,scaled)
Rem Note the call with the passed array 'samples'
Rem *without* dimension brackets

LN

ADbasic 5.00, Manual March 2010

ADwin

199

LN
LN provides the natural logarithm (to base e) of an argument.

Syntax

ret_val = LN(val)

Parameters

Notes

The execution time of the function takes 1.45µs with a T9, 0.7µs with
a T10, 0.37µs with a T11.

See also

Log, Exp

Example
DIM val1, val2 AS FLOAT

EVENT:
 val1 = 5.3
 val2 = LN(val1) 'Result: val2 = 1.667…

val Argument. FLOAT

ret_val Natural logarithm of the argument. FLOAT

LngToStr

ADbasic 5.00, Manual March 2010

ADwin

200

LngToStr
LNGTOSTR converts an integer value into a string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

LNGTOSTR(value, STRING)

Parameters

Notes

The length of the generated string depends on the character which is
to be converted and on the sign. String lengths of 1 to 11 characters are
possible.

You will find information about the string structure in chapter 4.3.5 on
page 88.

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, StrComp,
StrLeft, StrLen, StrMid, StrRight, ValF, ValI

value Value to be converted. LONG

String Result String. ARRAY

STRING

LngToStr

ADbasic 5.00, Manual March 2010

ADwin

201

Example
IMPORT STRING.LI9
DIM digits[11] AS STRING'Resulting string
DIM a AS LONG

INIT:
a = -1234567890

EVENT:
LNGTOSTR(a,digits) 'Convert to string
PAR_1=digits[1] 'String length = 11
PAR_2=digits[2] 'ASCII character 45 = "-"
PAR_3=digits[3] 'ASCII character 49 = "1"
PAR_4=digits[4] 'ASCII character 50 = "2"
PAR_5=digits[5] 'ASCII character 51 = "3"
PAR_6=digits[6] 'ASCII character 52 = "4"
PAR_7=digits[7] 'ASCII character 53 = "5"
PAR_8=digits[8] 'ASCII character 54 = "6"
PAR_9=digits[9] 'ASCII character 55 = "7"
PAR_10=digits[10] 'ASCII character 56 = "8"
PAR_11=digits[11] 'ASCII character 57 = "9"
PAR_12=digits[12] 'ASCII character 48 = "0"
PAR_13=digits[13] 'End of string sign = 0

Log

ADbasic 5.00, Manual March 2010

ADwin

202

Log
LOG provides the decimal logarithm (to base 10) of an argument.

Syntax

ret_val = LOG(val)

Parameters

Notes

The execution time of the function takes 1.5µs with a T9, 0.75µs with
a T10, 0.38µs with a T11.

See also

LN, Exp

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = 5.3
val2 = LOG(val1) 'Result: val2 = 0.724…

val Argument. FLOAT

ret_val Decimal logarithm of the argument. FLOAT

LowInit:

ADbasic 5.00, Manual March 2010

ADwin

203

LowInit:
The key word LOWINIT: marks the start of an initializing program section. The
program section always has low-priority, level 1.

Syntax

LOWINIT: {AT MEM_TYPE}

Parameters

Notes

See also overview of program sections in chapter 4.1.1 on page 74.

The program section LOWINIT: is run once as soon as the process is
started. The section serves to initialize, e.g. variables or data connec-
tions. LOWINIT: is always run before the INIT: section (if existing).

The section LOWINIT: is suitable for huge non-time-critical initializa-
tion sequences since it can be interrupted (due to low priority).

The processor type T11 can store each program section in a different
memory area (see chapter 4.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FIN-
ISH:.

With processor module Pro-CPU T11, the memory area can only be
set starting with revision E04.

See also

Dim, Init:, Event:, Finish:

Example
DIM val_1 AS FLOAT

LOWINIT:
val_1 = -5.3

<MEM_TYPE> T11 only since Rev. E04: memory area, where the pro-
gram section EVENT: is stored.
PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data mem-

ory.DRAM_EXTERN: external data memory.

Max_Float

ADbasic 5.00, Manual March 2010

ADwin

204

Max_Float
MAX_FLOAT returns the greater of 2 Float values.

Syntax

ret_val = MAX_FLOAT(val1, val2)

Parameters

Notes

- / -

See also

AbsF, Max_Long, Min_Long, ValF

Example
EVENT:
FPAR_10 = MAX_FLOAT(FPAR_1,FPAR_2)

val_1 Compared value 1 FLOAT

val_2 Compared value 2 FLOAT

ret_val The greater of both values. FLOAT

Min_Float

ADbasic 5.00, Manual March 2010

ADwin

205

Min_Float
MIN_FLOAT returns the smaller of 2 Float values.

Syntax

ret_val = MIN_FLOAT(val1, val2)

Parameters

Notes

- / -

See also

AbsF, Max_Long, Min_Long, ValF

Example
EVENT:
FPAR_10 = MIN_FLOAT(FPAR_1,FPAR_2)

val_1 Compared value 1 FLOAT

val_2 Compared value 2 FLOAT

ret_val The smaller of both values. FLOAT

Max_Long

ADbasic 5.00, Manual March 2010

ADwin

206

Max_Long
MAX_LONG returns the greater of 2 integer values.

Syntax

ret_val = MAX_LONG(val1, val2)

Parameters

Notes

- / -

See also

AbsI, Max_Float, Min_Long, ValI

Example
EVENT:
PAR_10 = MAX_LONG(PAR_1,PAR_2)

val_1 Compared value 1 LONG

val_2 Compared value 2 LONG

ret_val The greater of both values. LONG

Min_Long

ADbasic 5.00, Manual March 2010

ADwin

207

Min_Long
MIN_LONG returns the smaller of 2 integer values.

Syntax

ret_val = MIN_LONG(val1, val2)

Parameters

Notes

- / -

See also

AbsI, Max_Long, Min_Float, ValI

Example
EVENT:
PAR_10 = MIN_LONG(PAR_1,PAR_2)

val_1 Compared value 1 LONG

val_2 Compared value 2 LONG

ret_val The smaller of both values. LONG

MemCpy

ADbasic 5.00, Manual March 2010

ADwin

208

MemCpy
Processor T11 only: MEMCPY copies a specified amount of array elements
from a source array to a destination array.

Syntax

MEMCPY(array1[i1], array2[i2], count)

Parameters

Notes

MEMCPY is the simple and much faster alternative to copying data in a
FOR…NEXT-loop.

The instruction may be used neither with FIFO arrays nor with local
variables.

Please note: The data types of source and destination array must be
identical and the destination array must be declared large enough to
hold all copied data.

The access to indexes out of bounds can be monitored in debug mode
for the destination array (see Debug mode Option on page 52). The
source array cannot be monitored.

See also

Dim

array1[] Name of the source array. LONG

FLOAT

STRING

i1 Index (≥1) of the first copied array element. LONG

array2[] Name of the destination array. LONG

FLOAT

STRING

i2 Index (≥1) of the first array element to be
written.

LONG

count Number (≥1) of array elements to be copied. LONG

MemCpy

ADbasic 5.00, Manual March 2010

ADwin

209

Example
DIM DATA_1[75], DATA_2[100] AS FLOAT

EVENT:
Rem Copy 70 array elements from DATA_1 to DATA_2
MEMCPY (DATA_1[5], DATA_2[30], 70)

NOP

ADbasic 5.00, Manual March 2010

ADwin

210

NOP
NOP (No OPeration) causes the processor to wait for one processor cycle.

Syntax

NOP

Notes

The execution time of the instruction normally is one processor cycle:

With this instruction you can delay for a necessary waiting period (e.g.
after SET_MUX) if there is no other use of processing time.

See also

CPU_Sleep, P1_Sleep, P2_Sleep, Sleep

T9 25ns

T10 25ns

T11 3,3ns

causes the processor to wait for several processor cyclesNot

ADbasic 5.00, Manual March 2010

ADwin

211

causes the processor to wait for several processor cyclesNot
NOT inverts the bits of an argument.

Syntax

ret_val = NOT(val)

Parameters

Notes

If possible, use this function only with integer values (of the type LONG).
Floating point values (of the type FLOAT) are converted into integer val-
ues before they are inserted: The decimal places are truncated and the
value rounded if necessary before the NOT operation.

NOT runs with bits only, not with Boolean expressions. Therefore you
cannot negate logic expressions (true / false) with it. Not allowed:
NOT(PAR_2 > 2).

See also

And, If … Then … {Else …} EndIf, Or, XOr

Example
DIM val1 AS LONG
DIM val2 AS LONG

val1 = -3 '-3 =
' 11111111111111111111111111111101b

val2 = NOT(val1) 'Result: val2=010b=2

val Value to be inverted (no logic expression). LONG

ret_val Inverted argument. LONG

Or

ADbasic 5.00, Manual March 2010

ADwin

212

Or
The operator OR combines two integer values bit wise or two Boolean expres-
sions as a Boolean operator.

Syntax

ret_val = val_1 OR val_2 …val_2 'bit wise operator

IF ((expr1 OR (expr2)) THEN 'Boolean operator

Parameters

Notes

With OR you can only combine expressions of the same type (integer
or Boolean) with each other, mixing them is not possible.

You can use Boolean operators only in statements such as IF … THEN
… ELSE or DO … UNTIL (variables cannot have Boolean values).

If you use several Boolean operators in one line, you have to put each
operation into parentheses. This is not necessary for combining of in-
teger values.

See also

And, If … Then … {Else …} EndIf, causes the processor to wait for sev-
eral processor cyclesNot, XOr

Example

Bit wise operator:
DIM val1, val2, val3 AS LONG

val1 = 0100b
val2 = 0110b
val3 = val1 OR val2 'Result: val3 = 0110b

val_1, val_2 Integer value. LONG

expr1, expr2 Boolean expression with the value "true" or "false". LOGIC

Or

ADbasic 5.00, Manual March 2010

ADwin

213

Boolean operator:
DIM x AS LONG
DIM val4 AS LONG

INIT:
x = 15

EVENT:
IF ((x < 3) OR (x > 9)) THEN
val4 = 1

ELSE
val4 = 0

ENDIF 'Result: val4 = 1

P1_Sleep

ADbasic 5.00, Manual March 2010

ADwin

214

P1_Sleep
Processor T11 only: P1_SLEEP causes the Pro I bus to wait for a certain time.

Syntax

P1_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions CPU_SLEEP and P2_SLEEP
(see also chapter 5.2.4 "Setting Waiting Times Exactly"). For proces-
sors up to T10 use SLEEP.

P1_SLEEP is used to wait a defined time between 2 accesses to mod-
ules on the Pro I bus.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process P1_SLEEP cannot be interrupted. Thus, very
high values in high-priority processes can cause an interruption in the
communication to the PC.
Do not use values lower than the minimum value given.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array elements.
• The variable in the argument is declared in the memory area

DRAM_EXTERN. The time interval may vary because it depends on
several conditions.

• The argument is an array.
• The argument is a floating point value.

See also

CPU_Sleep, NOP, P2_Sleep, Sleep

val Number of the time units to wait in 10ns:
with constants: 7…715827879.
with variables: 9…715827879.

LONG

P1_Sleep

ADbasic 5.00, Manual March 2010

ADwin

215

Example
EVENT:
SET_MUX(1,0) 'Set multiplexer on module 1
P1_SLEEP(250) 'wait 2.5 µs (=250*10ns)

'= Mux settling time
START_CONV(1) 'Start conversion
Rem ...

P2_Sleep

ADbasic 5.00, Manual March 2010

ADwin

216

P2_Sleep
Processor T11 only: P2_SLEEP causes the Pro II bus to wait for a certain time.

Syntax

P2_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions CPU_SLEEP and P1_SLEEP
(see also chapter 5.2.4 "Setting Waiting Times Exactly"). For proces-
sors up to T10 use SLEEP.

P2_SLEEP is used to wait a defined time between 2 accesses to mod-
ules on the Pro II bus.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process P2_SLEEP cannot be interrupted. Thus, very
high values in high-priority processes can cause an interruption in the
communication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array elements.
• The variable in the argument is declared in the memory area

DRAM_EXTERN. The time interval may vary because it depends on
several conditions.

• The argument is an array.
• The argument is a floating point value.

See also

CPU_Sleep, NOP, P1_Sleep, Sleep

val Even number (14…715827878) of the time units to wait
in 10ns. An odd number is not allowed.

LONG

P2_Sleep

ADbasic 5.00, Manual March 2010

ADwin

217

Example
EVENT:
P2_SET_MUX(0) 'Set multiplexer
P2_SLEEP(210) 'wait 2.1 µs (=210*10ns)

'= Mux settling time
P2_START_CONV(1) 'start conversion
Rem ...

Peek

ADbasic 5.00, Manual March 2010

ADwin

218

Peek
PEEK reads the contents of a specified memory location of the ADwin system.

Syntax

ret_val = PEEK(addr)

Parameters

Notes

You will find an overview of the register addresses (Gold and Light-16)
in your hardware documentation.

See also

Poke, Read_Timer

Example

The instruction below reads the value of the memory address 30h,
which is the data register of the ADC1 on the ADwin-Gold system and
contains the converted analog value.
Rem read out memory locations of an ADwin-Gold system
val = PEEK(30h)

addr Address of the memory location to be read out. LONG

ret_val Contents of the memory location. LONG

Poke

ADbasic 5.00, Manual March 2010

ADwin

219

Poke
POKE writes a value into a specified memory location of the ADwin system.

Syntax

POKE(addr, value)

Parameters

Notes

With POKE you are overwriting the specified memory address. Informa-
tion stored there will be lost.

Do not write to memory addresses whose functions you do not know.
If you do, it is possible that important data, processes or even the op-
erating system will be destroyed.
If this should happen, existing measurement data is lost. To recover,
you must reboot the ADwin system and reload the processes.

You will find an overview of the register addresses (Gold and Light-16)
in your hardware documentation.

See also

Peek, Read_Timer

Example
'Change memory locations of an ADwin-Gold system
'Write into DAC register 1: 3072 (=+5V in the range ±10V)
POKE(20400050h, 3072)
POKE(20400010h, 011b) 'Start output on all DACs
POKE(204000C0h, 111100b)'Set outputs DIO18…DIO21 to High

addr Address of the memory location into which values are
written.

LONG

value Value to be written. LONG

Processdelay

ADbasic 5.00, Manual March 2010

ADwin

220

Processdelay
The system variable PROCESSDELAY defines the process delay (cycle time) of
a process.
PROCESSDELAY replaces the system variable GLOBALDELAY which is still
valid for reasons of compatibility.

Syntax

ret_val = PROCESSDELAY

or

PROCESSDELAY = expr

Parameters

Notes

In a time-controlled process the section EVENT: is called repeatedly
and in fixed time intervals by the internal counter. The time interval bet-
ween two cyclic calls is called process delay and is counted in clock cy-
cles.

The time interval of the Processdelay depends on the process priority
and the processor type:

With high-priority processes select a sufficiently large process delay to
avoid overloading the ADwin system (see also chapter 6.1.4 on
page 113). As a rule of thumb the processor workload (display field:
"Busy x%" in the status bar) should be under 90 percent and must not
exceed 100 percent.
If the time needed for processing the section EVENT: is larger than the
process delay, the next counter call and following will be delayed. If this

ret_val Current cycle time in clock cycles. LONG

expr Cycle time to be set: Number (≥1) of clock cycles. LONG

Processor Priority

High Low

T9 25ns 100µs

T10 25ns 50µs

T11 3,3ns 3,3ns = 0,003µs

Processdelay

ADbasic 5.00, Manual March 2010

ADwin

221

delay cannot be caught up within 250ms, the communication between
the ADwin system and the computer can be interrupted.

You may set a constant process delay by assigning a value to the va-
riable PROCESSDELAY in the section INIT: / LOWINIT:. You will then
overwrite the default value you have set in the dialog window
"Options / Process" under "Initial Processdelay".

You can set the variable only once in a section.

If the parameter PROCESSDELAY is changed in a process cycle in the
section EVENT:, the cycle time (processs delay) will be changed im-
mediately. This may be critical especially when the cycle time has been
shortened: Make sure that the execution time of the program remains
less than the newly set cycle time.

See also

Read_Timer

Example
INIT:
Rem Set cycle time
PROCESSDELAY = 40000
Rem For T9 and T10, high priority: 1 ms
Rem For T11, high+low priority: 0.133 ms
Rem ...

Processdelay

ADbasic 5.00, Manual March 2010

ADwin

222

If you need a longer cycle time than may be set with PROCESSDELAY
you can use an auxiliary variable:
INIT:
Rem Set max. cycle time
PROCESSDELAY = 2147483647
Rem For T9 und T10, high priority: 53.7s
Rem For T11, high+low priority: 7.2s
Rem initalize auxiliary variable
PAR_1 = 0

EVENT:
INC PAR_1
Rem use 100fold cycle time
Rem For T9 und T10, high priority: 89.5 min
Rem For T11, high+low priority: 12min
IF (PAR_1 = 100) THEN
PAR_1 = 0
Rem run program

ENDIF

Process_Error

ADbasic 5.00, Manual March 2010

ADwin

223

Process_Error
PROCESS_ERROR returns the previously occurred error of the current process.

Syntax

ret_val = PROCESS_ERROR

Parameters

Notes

The return value is defined only if debug mode is enabled (see Debug
mode Option, page 52). The variable is read-only.

See also

ProcessN_Running, Start_Process, Stop_Process

Example
EVENT:
PAR_10 = SQRT(PAR_12)
Rem read previous error in the process
PAR_2 = PROCESS_ERROR

ret_val Number of the previously occurred error in the process:
0: no error
1: Division by zero
2: Square root from negative value
10: Accessing a too high element number of a global

array.
11: Accessing a too small element number (≤ 0) of a

global array.
12: Accessing a too high element number of a local

array.
13: Accessing a too small element number (≤ 0) of a

local array.
30: FIFO index is not a FIFO.

LONG

ProcessN_Running

ADbasic 5.00, Manual March 2010

ADwin

224

ProcessN_Running
The system variable PROCESSn_RUNNING returns the current status of the
specified process.

Syntax

ret_val = PROCESSn_RUNNING

Parameters

Notes

The system variable is read only.

See also

End, Exit, Restart_Process, Start_Process, Start_Process_Delayed,
Stop_Process

Example
EVENT:
Rem Get the status of process 2
PAR_2 = PROCESS2_RUNNING

n Number of the requested process (0…12, 15). CONST

LONG

ret_val Process status:
1 Process is running.
0 Process is stopped.
-1 Process is being stopped.

LONG

Read_Timer

ADbasic 5.00, Manual March 2010

ADwin

225

Read_Timer
READ_TIMER returns the current counter value of the ADwin system timer.

Syntax

ret_val = READ_TIMER()

Parameters

Notes

The counter value cannot be written.

There are 2 timers in an ADwin system (32-bit), which count in different
units of time:

You may determine a time interval from the difference of 2 timer val-
ues. Please note that any read timer value will be reached again after
a certain time interval, which depends on the units of time given above:

See also

Processdelay

Example
DIM timervalue AS LONG

EVENT:
timervalue = READ_TIMER()

ret_val Current counter value. LONG

process priority T9 T10 T11

high 25ns 25ns 3,3ns

low 100µs 50µs 3,3ns

process priority T9 T10 T11

high 107.4s 107.4s 14.3s

low 119.3h 59.7h 14.3s

Rem, '

ADbasic 5.00, Manual March 2010

ADwin

226

Rem, '
The compiler instructions Rem or "'" make it possible to insert comments into
the source code for a program. Any text in a program line following the instruc-
tion is ignored by the compiler.

Syntax

Rem comment

instr : Rem comment

instr 'comment

Parameters

Notes

The instruction only applies to the line in which it is used. If a comment
requires more than one text line, then you must begin each line with the
instructions Rem or "'".

If you want to insert a Rem comment after an instruction, separate it
fromt he instruction by a colon ":". If you use "'" a colon is not neces-
sary.

Example
Rem This is a comment that needs more than
Rem one text line
'This is a comment line, too
DIM min AS LONG: Rem comment after an instruction
DIM max AS LONG 'Also a comment after an instruction

comment Any character strings.

instr ADbasic instruction.

Reset_Event

ADbasic 5.00, Manual March 2010

ADwin

227

Reset_Event
RESET_EVENT deletes all external Event signals, which are to be processed.

Syntax

RESET_EVENT

Notes

The instruction is only ValId for externally controlled processes and in
the INIT: section.

We recommend to run the instruction at the end of the INIT: section.
This prevents a too early Event signal (coming up during initialization)
from starting the main program (EVENT: section) too early.

More about the operating mode of the opreating system for externally
controlled processes see section "Externally Controlled Process" on
page 120.

See also

End, Exit, ProcessN_Running, Start_Process, Stop_Process

Example
INIT:
Rem Initialization
Rem ...
RESET_EVENT 'Reset former Event signals

EVENT:
Rem Any Event signal starts the main program
Rem ...

Restart_Process

ADbasic 5.00, Manual March 2010

ADwin

228

Restart_Process
Processor T11 only: RESTART_PROCESS starts the same process again.

Syntax

RESTART_PROCESS

Notes

The instruction is ValId in the program section FINISH: only.

All lines of the program section after RESTART_PROCESS will be exe-
cuted, before the process starts anew. For better readability we recom-
mend put the instruction at the end of the program section.

The instruction may cause an endless loop. Prevent an endless loop by
using RESTART_PROCESS inside of a conditional block.

See also

End, Exit, If … Then … {Else …} EndIf, Start_Process, Start_Process_
Delayed, Stop_Process

Example
EVENT:
Rem ...

FINISH:
Rem ...
IF (cond = 2) THEN
Rem If condition is true, the process is started anew
RESTART_PROCESS

ENDIF

SelectCase

ADbasic 5.00, Manual March 2010

ADwin

229

SelectCase
The SELECTCASE control structure is used to execute one of several instruc-
tion blocks depending on a given value.

Syntax

SELECTCASE var

CASE const1a{,const1b, …}

… 'Instruction block

CCASE const2a{,const2b, …}

… 'Instruction block

CASEELSE

… 'Instruction block

ENDSELECT

Parameters

Notes

This control structure cannot be used within a library function or sub-
routine.

You may nest several SELECTCASE structures; the only limit is the
memory size.

Depending on the argument you can replace multiple nested IF struc-
tures with SELECTCASE so that they will be more clearly structured;
another benefit is this structure is executed faster than several conse-
cutive IF structures.

If the argument to be evaluated does not correspond to one of the
CASE constants, only the CASEELSE instruction block is executed (if
there is any). This is also true when the argument to be evaluated is
beyond the value range of the constant.

var Argument to be evaluated (no expression). LONG

const1a,
const1b,
const2a,
const2b

Value of var (0…255), where the following instruction
block will be executed.

CONST

LONG

SelectCase

ADbasic 5.00, Manual March 2010

ADwin

230

CCASE means "Continue Case": If a CASE or CCASE instruction block
has been executed, then a directly following CCASE instruction block is
executed, too.
In the example below not only ADC(5), but also ADC(7) are executed.
However, if PAR_1=3, then only ADC(7) will be executed.

If you change variables in the instruction blocks in such a manner that
the value of the argument is changed, this will only be considered at the
next SELECTCASE query.

The SELECTCASE structure creates an internal branch table located in
the data memory (DM), whose memory requirements correspond to
the greatest used CASE-/CCASE-constant. In order to limit the memory
requirements to a minimum, the value range of constants is restricted
to 0…255. There is:

Memory requirement in bytes = [(greatest constant value)+1] × 4

As an example the memory requirement with a max. CASE constant
200 is (200 + 1) × 4 = 804 Bytes; the maximum possible memory re-
quirement is 1KiB.

See also

Do … Until, For … To … {Step …} Next, If … Then … {Else …} EndIf

Example
EVENT:
PAR_1=2
SELECTCASE PAR_1 'Evaluate PAR_1
CASE 0 'If PAR_1 = 0?

PAR_10 = ADC(1) 'Read out ADC(1)
CASE 1 'If PAR_1 = 1?

PAR_10 = ADC(3) 'Read out ADC(3)
CASE 2 'If PAR_1 = 2?

PAR_10 = ADC(5) 'read out ADC(5) and ADC(7), too
'(by CCase)

CCASE 3 'If PAR_1 = 3?
PAR_11 = ADC(7) 'Read out ADC(7)

CASE 4,5,6,7,16 'If PAR_1 = 4, 5, 6, 7 or 16?
PAR_2 = DIGIN_WORD()'read digital inputs

CASEELSE 'PAR_1: other values
DIGOUT_WORD(PAR_10)'Output value of PAR_10 to the

'digital outputs
ENDSELECT 'End of selection

Shift_Left

ADbasic 5.00, Manual March 2010

ADwin

231

Shift_Left
The SHIFT_LEFT instruction shifts all bits of a value by a specified number of
places to the left. The empty bits at the right are filled with zeroes.

Syntax

ret_val = SHIFT_LEFT(val,num)

Parameters

Notes

Use only integer values for the argument if possible. Floating point val-
ues (of the type FLOAT) are converted into integer values before shift-
ing them. The decimal places are truncated and the value is rounded
if necessary.

Shifting the bits n places to the left corresponds to the multiplication
with 2n. A possible overflow is not taken into account, which means, a
set bit is lost if it is left-shifted beyond the length of an argument.

The execution time is similar to that one of a comparable multiplication
operator.

See also

Shift_Right

Example
DIM val1, val2 AS LONG

EVENT:
val1 = 1024
val2 = SHIFT_LEFT(val1, 2)'Result: val2=4096

val Argument. LONG

num Number of places the argument is shifted (0…31). LONG

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

Shift_Right

ADbasic 5.00, Manual March 2010

ADwin

232

Shift_Right
The SHIFT_RIGHT instruction shifts all bits of a value by a specified number
of places to the right. The empty bits at the left are filled with zeroes.

Syntax

ret_val = SHIFT_RIGHT(val,num)

Parameters

Notes

Use only integer values for the argument if possible. Floating point val-
ues (of the type FLOAT) are converted into integer values before shift-
ing them. The decimal places are truncated and the value is rounded.

If the argument val is a positive number, shifting it num places to the
right corresponds to a division by 2n. A possible division remainder is
not taken into account, which means, a set bit is lost if it is right-shifted
beyond the length of an argument.

The execution time is shorter than the execution time of a comparable
division. For instance val_2 = SHIFT_RIGHT(val_1,3) is faster
than val_2 = val_1 / 8.

See also:

Shift_Left

Example
DIM val1, val2 AS LONG

EVENT:
val1 = 1024
val2 = SHIFT_RIGHT(val1, 3)'Result: val2=128

val Argument. LONG

num Number of places, which are shifted (0…31). LONG

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

Sin

ADbasic 5.00, Manual March 2010

ADwin

233

Sin
SIN provides the sine of an angle.

Syntax

ret_val = SIN(angle)

Parameters

Notes

If you use input values which are not in the range of -π…+π, the calcu-
lation error grows with the increasing value.

The execution time of the function takes 1.25µs with a T9, 0.63µs with
a T10, 0.28µs with a T11.

See also

Cos, Tan, ArcSin, ArcCos, ArcTan

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = -5.3

val2 = SIN(val1)'Result: val2=0.83…

angle Arc angle (-π…+π). FLOAT

ret_val Sine of the angle (-1…1). FLOAT

Sleep

ADbasic 5.00, Manual March 2010

ADwin

234

Sleep
Processors until T10 only: SLEEP causes the processor to wait for a certain
time.

Syntax

SLEEP(val)

Parameters

Notes

For processor T11, SLEEP must be replaced by one of the instructions
CPU_SLEEP, P1_SLEEP or P2_SLEEP (see also chapter 5.2.4 "Setting
Waiting Times Exactly"); mostly P1_SLEEP is best.

Since SLEEP is executed as a count loop, it cannot be interrupted in
high-priority process.

Please make sure (especially when using variables) that the argument
does not have a value less than 1, otherwise the TiCo processor ADwin
system will become unstable. And please consider that very high val-
ues in high-priority processes can cause an interruption in the commu-
nication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array elements.
• The variable in the argument is declared in the memory area

DRAM_EXTERN.
• The argument is an array.
• The argument is a floating point value.

See also

CPU_Sleep, NOP, P1_Sleep, P2_Sleep

val Number (≥ 1) of time units to wait in 100ns. LONG

Sleep

ADbasic 5.00, Manual March 2010

ADwin

235

Example
EVENT:
SET_MUX(0) 'Set multiplexer
SLEEP(25) 'Wait 2.5 µs (=25*100ns) = settling

'time of the MUX
START_CONV(1) 'Start conversion
Rem ...

Sqrt

ADbasic 5.00, Manual March 2010

ADwin

236

Sqrt
SQRT returns the square root of a value.

Syntax

ret_val = SQRT(val)

Parameters

Notes

The execution time of the function takes 0.9µs with a T9, 0.45µs with
a T10, 0.26µs with a T11.

Example
DIM val_1, val_2 AS FLOAT

EVENT:
val_1 = 16
val_2 = SQRT(val1) 'Result: val_2 = 4

val Argument. FLOAT

ret_val Square root of the argument or.
0 for (val<0).

FLOAT

Start_Process

ADbasic 5.00, Manual March 2010

ADwin

237

Start_Process
START_PROCESS starts a specified process.

Syntax

START_PROCESS(processnum)

Parameters

Notes

Please assure, that the process is transferred to the ADwin system be-
fore you start it.

The instruction has no effect, if you indicate the number of a process,
which

• is already running or
• has the same number as the calling process.

You can start a process with START_PROCESS from another process
only (except for RESTART_PROCESS). It is not possible that a process
starts itself, for instance in the section FINISH:.

See also

End, Exit, Restart_Process, Start_Process_Delayed, Stop_Process

Example
EVENT:
IF (ADC(1) > 3072) THEN'threshold value exceeded?
START_PROCESS(2) 'Start measurement process 2
END

ENDIF

processnum Number of the process to be started (1…12, 15). LONG

Start_Process_Delayed

ADbasic 5.00, Manual March 2010

ADwin

238

Start_Process_Delayed
Processor T11 only: START_PROCESS_DELAYED starts a specified process
(section EVENT:) with the defined delay.

Syntax

START_PROCESS_DELAYED(processnum, delay)

Parameters

Notes

Please assure, that the process is transferred to the ADwin system be-
fore you start it.

The instruction may only start a time-controlled process with high pri-
ority; it has no effect, if you indicate the number of a process, where
one of the following is true:

• The process is externally controlled.
• The process has low priority.
• The process is running already.
• The process has the same number as the calling process.

You may start a process with START_PROCESS_DELAYED from a dif-
ferent process only (except for RESTART_PROCESS).

A delayed started process always begins with the EVENT: section, the
sections INIT: and LOWINIT: will not be executed.

These items apply to the wanted starting time:
• The delay until starting time starts being counted with processing

START_PROCESS_DELAYED; the processing time of the instruction
is 30 clock cycles.

• From a high-priority program section the starting time can only be
maintained, if the delay time delay is greater than the remaining
processing time for the rest of the section.
Any subsequent lines of the section must be processed, before the
selected process can start. The starting time therefore is
additionally delayed by a too long remaining processing time.

processnum Number of the process to be started (1…10). LONG

delay Delay time (>30) in clock cycles of the timer.
With T11 one clock cycle takes 3,3ns.

LONG

Start_Process_Delayed

ADbasic 5.00, Manual March 2010

ADwin

239

See also

Restart_Process, Start_Process, Stop_Process

Example
EVENT:
Rem ...
IF (cond = 2) THEN
Rem If condition is true, process 2 is started
Rem with a delay of 100 clock cycles.
START_PROCESS_DELAYED(2,100)

ENDIF
Rem There are NO MORE program lines here to surely maintain
Rem the wanted starting time.

Stop_Process

ADbasic 5.00, Manual March 2010

ADwin

240

Stop_Process
STOP_PROCESS stops a specified process from another running process.

Syntax

STOP_PROCESS(processnum)

Parameters

Notes

The instruction has no effect, if you indicate the number of a process,
which

• has already been stopped,
• has not yet been loaded to the ADwin system.

Stopping the EVENT: section happens as follows:
• First the specified process gets the status "process is being

stopped" (see PROCESSn_RUNNING); with low priority processes
this will take some time (time-out).

• If the EVENT: section is being processed when the stop signal
arrives, the execution of the EVENT: section is yet completed.

• Normally the EVENT: section is called and processed once again.
• If existing, the FINISH: section is processed (always at low-

priority).
• When STOP_PROCESS has completed, the specified process is

inactive, but can be started at any time.

If you like the process to stop itself, use the instructions END or EXIT.

See also

End, Exit, ProcessN_Running, Restart_Process, Start_Process,
Start_Process_Delayed

Example
EVENT:
IF (ADC(1) > 3072) THEN'threshold value exceeded?
STOP_PROCESS(2) 'stop measurement process 2
END

ENDIF

processnum Number of the process to be stopped (1…12,15). LONG

String ""

ADbasic 5.00, Manual March 2010

ADwin

241

String ""
Strings are put into quotes " ".

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

DIM text[length] AS STRING

text = "ADwin"

Parameters

Notes

Dimension text variables with DIM … AS STRING (see page 155). A
string you want to assign to a variable is put in quotes.

More information about text variables and the structure of strings can
be found under "Strings" on page 88.

Strings can be processed with the instructions mentioned below. Also,
you can add (concatenate) strings with the "+"-operator.

See also

+ String Addition, Dim, Asc, Chr, FloToStr, Flo40ToStr, LngToStr, Str-
Comp, StrLeft, StrLen, StrMid, StrRight, ValF, ValI

text[] Name of the text variable. ARRAY

STRING

length Length of the text variable. CONST

LONG

String ""

ADbasic 5.00, Manual March 2010

ADwin

242

Example
IMPORT String.LI9

Rem Dimension strings with 3 and 1 characters
DIM chars[3] AS STRING
DIM char[1] AS STRING

INIT:
Rem Transfer characters to the strings
chars = "ABC"
char = "z"

EVENT:
PAR_1 = chars[1] 'PAR_1 = 3 number of the characters
PAR_2 = chars[2] 'PAR_2 = 65 (= "A")
PAR_3 = chars[3] 'PAR_3 = 66 (= "B")
PAR_4 = chars[4] 'PAR_4 = 67 (= "C")
PAR_5 = chars[5] 'PAR_5 = 0 end of string

Rem Conversion into upper Case:
Rem Lower Case: a, b, c, ..., x, y, z?
PAR_6 = ASC(char)
IF (PAR_6>96 AND PAR_6<133) THEN
Rem Subtract 32 in order to convert into upper cases
CHR(PAR_6-32,char)

ENDIF

StrComp

ADbasic 5.00, Manual March 2010

ADwin

243

StrComp
STRCOMP checks two strings to determine if they are identical.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = STRCOMP(string1[], string2[])

Parameters

Notes

If the strings do not have the same lengths, a negative value is re-
turned, even if the shorter string is included in the longer one.

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrLeft, StrLen, StrMid, StrRight, ValF, ValI

Example
IMPORT STRING.LI9

DIM text1[7], text2[7], text3[8] AS STRING

INIT:
text1 = "ADBASIC" 'ADbasic correct writing
text2 = "ADBASCI" 'ADbasic wrong writing
text3 = "ADBASICA" 'ADbasic wrong writing

EVENT:
PAR_1 = STRCOMP(text1,text2) 'PAR_1=-1
PAR_2 = STRCOMP(text1,text3) 'PAR_2=-1

string1[],
string2[]

String. ARRAY

STRING

CONST

ret_val 0: Strings are identical.
-1: Strings are different.

LONG

StrLeft

ADbasic 5.00, Manual March 2010

ADwin

244

StrLeft
STRLEFT returns a specified number of characters from the left end of a string
into a second string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRLEFT(string1[], length, string2[])

Parameters

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLen, StrMid, StrRight, ValF, ValI

string1[] String, from which is copied. ARRAY

STRING

length Number of characters to be copied. LONG

string2[] String, into which is copied. ARRAY

STRING

StrLeft

ADbasic 5.00, Manual March 2010

ADwin

245

Example
IMPORT String.LI9

Rem Dimension the source and destination strings
DIM text1[32], text2[14] AS STRING

INIT:
Rem Define source string
text1 = "MEGA real-time with ADwin systems"

EVENT:
Rem Get 14 characters from the left from the string text1
STRLEFT(text1,14,text2)
PAR_1 = text2[1] 'String length = 14 characters
PAR_2 = text2[2] 'ASCII-character 4Dh = "M"
PAR_3 = text2[3] 'ASCII-character 45h = "E"
PAR_4 = text2[4] 'ASCII-character 47h = "G"
PAR_5 = text2[5] 'ASCII-character 41h = "A"
PAR_6 = text2[6] 'ASCII-character 20h = " "
PAR_7 = text2[7] 'ASCII-character 72h = "r"
PAR_8 = text2[8] 'ASCII-character 65h = "e"
PAR_9 = text2[9] 'ASCII-character 61h = "a"
PAR_10 = text2[10] 'ASCII-character 6Ch = "l"
PAR_11 = text2[11] 'ASCII-character 2Dh = "-"
PAR_12 = text2[12] 'ASCII-character 74h = "t"
PAR_13 = text2[13] 'ASCII-character 69h = "i"
PAR_14 = text2[14] 'ASCII-character 6Dh = "m"
PAR_15 = text2[15] 'ASCII-character 65h = "e"
PAR_16 = text2[16] 'End of string character = 0

StrLen

ADbasic 5.00, Manual March 2010

ADwin

246

StrLen
STRLEN returns the number of characters in a string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = STRLEN(String[])

Parameters

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLeft, StrMid, StrRight, ValF, ValI

Example
IMPORT String.LI9
DIM text1[50] AS STRING

INIT:
text1 = "MEGA real-time with ADwin systems"

EVENT:
PAR_1 = STRLEN(text1) 'String length: PAR_1 = 33

String[] String whose length is determined . ARRAY

STRING

ret_val Number of characters in the string. LONG

StrMid

ADbasic 5.00, Manual March 2010

ADwin

247

StrMid
STRMID returns a specified number of characters from a string into a second
string, starting from a certain position in the string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRMID(string1[], start, length, string2[])

Parameters

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLeft, StrLen, StrRight, ValF, ValI

string1[] String from which is copied. ARRAY

STRING

start Position of the first character which is copied. LONG

length Number of characters to be copied. LONG

string2[] String into which is copied. ARRAY

STRING

StrMid

ADbasic 5.00, Manual March 2010

ADwin

248

Example
IMPORT String.LI9

Rem Dimension source and destination strings:
DIM text1[32], text2[20] AS STRING

INIT:
Rem Define source string
text1 = "MEGA real-time with ADwin systems"

EVENT:
Rem Copy 20 characters beginning at the 6. character from
Rem the string text1
STRMID(text1,6,18,text2)
PAR_1 = text2[1] 'String-length = 20 characters
PAR_2 = text2[2] 'ASCII-character 72h = "r"
PAR_3 = text2[3] 'ASCII-character 65h = "e"
PAR_4 = text2[4] 'ASCII-character 61h = "a"
PAR_5 = text2[5] 'ASCII-character 6Ch = "l"
PAR_6 = text2[6] 'ASCII-character 2Dh = "-"
PAR_7 = text2[7] 'ASCII-character 74h = "t"
PAR_8 = text2[8] 'ASCII-character 69h = "i"
PAR_9 = text2[9] 'ASCII-character 6Dh = "m"
PAR_10 = text2[10] 'ASCII-character 65h = "e"
PAR_11 = text2[11] 'ASCII-character 20h = " "
PAR_12 = text2[12] 'ASCII-character 77h = "w"
PAR_13 = text2[13] 'ASCII-character 69h = "i"
PAR_14 = text2[14] 'ASCII-character 74h = "t"
PAR_15 = text2[15] 'ASCII-character 68h = "h"
PAR_16 = text2[16] 'ASCII-character 20h = " "
PAR_17 = text2[17] 'ASCII-character 41h = "A"
PAR_18 = text2[18] 'ASCII-character 44h = "D"
PAR_19 = text2[19] 'ASCII-character 77h = "w"
PAR_20 = text2[20] 'ASCII-character 69h = "i"
PAR_21 = text2[21] 'ASCII-character 6Eh = "n"
PAR_22 = text2[22] 'End of string sign = 0

StrRight

ADbasic 5.00, Manual March 2010

ADwin

249

StrRight
STRRIGHT returns a specified number of characters from the right end of a
string into a second string.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRRIGHT(string1[], length, string2[])

Parameters

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLeft, StrLen, StrMid, ValF, ValI

string1[] String from which it is copied. ARRAY

STRING

length Number of the characters to copy. LONG

string2[] String into which it is copied. ARRAY

STRING

StrRight

ADbasic 5.00, Manual March 2010

ADwin

250

Example
IMPORT String.LI9

Rem Dimension the source and destination string:
DIM text1[32], text2[13] AS STRING

INIT:
Rem Define the source string
text1 = "MEGA real-time and ADwin systems"

EVENT:
Rem Get 13 characters from the string text1,
Rem starting at right
STRRIGHT(text1,13,text2)
PAR_1 = text2[1] 'String-length = 13 characters
PAR_2 = text2[2] 'ASCII-character 41h = "A"
PAR_3 = text2[3] 'ASCII-character 44h = "D"
PAR_4 = text2[4] 'ASCII-character 77h = "w"
PAR_5 = text2[5] 'ASCII-character 69h = "i"
PAR_6 = text2[6] 'ASCII-character 6Eh = "n"
PAR_7 = text2[7] 'ASCII-character 2Dh = "-"
PAR_8 = text2[8] 'ASCII-character 53h = "S"
PAR_9 = text2[9] 'ASCII-character 79h = "y"
PAR_10 = text2[10] 'ASCII-character 73h = "s"
PAR_11 = text2[11] 'ASCII-character 74h = "t"
PAR_12 = text2[12] 'ASCII-character 65h = "e"
PAR_13 = text2[13] 'ASCII-character 6Dh = "m"
PAR_14 = text2[14] 'ASCII-character 73h = "s"
PAR_15 = text2[15] 'End of string sign = 0

Sub … EndSub

ADbasic 5.00, Manual March 2010

ADwin

251

Sub … EndSub
The SUB…ENDSUB commands are used to define a subroutine macro with
passed parameters.

Syntax

SUB macro_name({val_1, val_2, …})

{DIM var AS <VAR_TYPE>}

… 'Instruction block

ENDSUB

Parameters

Notes

You will find general information about macros in chapter 4.5.1 on
page 96.

This instruction defines a subroutine-macro, which means the whole
instruction block between SUB and ENDSUB is inserted in the place
where the macro is called.

Subroutines help to make your source code more clearly-structured.
Please note that each subroutine call will enlarge the compiled file.

You may insert subroutines at the following 3 places:

1. In front of the section INIT:/LOWINIT:

2. After the section FINISH:

3. In a separate file which you include with #INCLUDE (only at the
locations 1. and 2.).

Be aware that in subroutines:
• no process sections such as LOWINIT:, INIT:, EVENT:, or

FINISH: can be defined,
• local variables can be defined at the beginning, which are only

available in the function and for the processing period.

macro_name Name of the subroutine.

val_1, val_2 Name of the passed parameter;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

FLOAT

LONG

Sub … EndSub

ADbasic 5.00, Manual March 2010

ADwin

252

This is true even when a variable has the same name as a variable
outside the function.

If a passed parameter is part of an expression inside a subroutine the
parameter should be set in braces. This avoids problems with prece-
dence rules (e.g. BODMAS).

A subroutine is called with its name and with all its arguments you have
defined. Valid arguments include every expression (also arrays), as
long as it has the appropriate data type.
If you do not define arguments, you have to use the empty parentheses
when calling the subroutine: name().

If an array (not an array element) is used as a passed parameter the
syntax is different for call and definition:

• Subroutine call without dimension brackets:
subname(array_pass)

• Subroutine definition with dimension brackets:
SUB subname(array_def[]) …

Values are assigned to elements of passed arrays as usual:
array_pass[2] = value

If a value is assigned to a passed parameter x within the subroutine,
the subroutine’s call must not use a constant x, but a variable or a sin-
gle array element. If so, a passed parameter can be used to hold a re-
turn value.

See also

#Include, Function … EndFunction, Lib_Sub … Lib_EndSub, Lib_
Function … Lib_EndFunction

Example
SUB Fast_Dac1(val1)
Rem Outputs val1 on the analog output 1 of an ADwin-Gold
POKE(20400050h, (val1))'Write value into the

'output register
POKE(20400010h, 11011b) 'Start conversion

ENDSUB

Calling the subroutine Fast_Dac1 is made with the program line:
Fast_Dac1(NewValue)

Sub … EndSub

ADbasic 5.00, Manual March 2010

ADwin

253

The same subroutine with an array as passed parameter:
SUB Fast_Dac1(array[])
Rem Outputs element 3 of the array on the
Rem analog output 1 of an ADwin-Gold
POKE(20400050h, (array[3]))'Write value to output
POKE(20400010h, 11011b) 'Start conversion

ENDSUB

Calling this subroutine is made in a similar manner (but without dimen-
sion brackets):
Fast_Dac1(array)

For array you can indicate a global or a local array. Enter the array
name only, without element number and brackets.

Tan

ADbasic 5.00, Manual March 2010

ADwin

254

Tan
TAN returns the tangent of an argument.

Syntax

ret_val = TAN(angle)

Parameters

Notes

If you use input values which are not in the range of -π/2…+π/2, the cal-
culation error grows with the increasing value.

The execution time of the function takes 1.33µs with a T9, 0.67µs with
a T10, 0.31µs with a T11.

See also

Sin, Cos, ArcSin, ArcCos, ArcTan

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = 5.3
val2 = TAN(val1) 'Result: val2 = -1.50...

angle Arc angle (-π/2…π/2). FLOAT

ret_val Cosine of the angle (-1…1). FLOAT

Trace_Mode_Pause

ADbasic 5.00, Manual March 2010

ADwin

255

Trace_Mode_Pause
TRACE_MODE_PAUSE disables the trace mode.

Syntax

TRACE_MODE_PAUSE

Notes

TRACE_MODE_PAUSE disables the trace mode from within an ADbasic
program. With TRACE_MODE_RESUME the trace mode is enabled
again. The disabling/enabling concerns trace-active program lines
only, which are marked with a ? (question mark).

Both instructions allow to enable or disable the trace mode for certain
program lines or program sections. Therefore the trace mode can be
activated e.g. as long as a specified condition is fulfilled.

See also

Trace_Mode_Resume

Example
EVENT:
PAR_1 = ADC(1,4)
IF (PAR_1 > 32768) THEN
TRACE_MODE_RESUME 'Trace mode enabled

'For this program section the trace
'mode is continously activated

TRACE_MODE_PAUSE 'Trace mode disabled
ENDIF

Trace_Mode_Resume

ADbasic 5.00, Manual March 2010

ADwin

256

Trace_Mode_Resume
TRACE_MODE_RESUME activates the trace mode beginning in the next pro-
gram line.

Syntax

TRACE_MODE_RESUME

Notes

TRACE_MODE_RESUME enables the trace mode in an ADbasic pro-
gram again after it has been disabled with TRACE_MODE_PAUSE. The
disabling/enabling concerns trace-active program lines only, which are
marked with a ? (question mark).

Both instructions allow to enable or disable the trace mode for certain
program lines or program sections. Therefore the trace mode can be
activated e.g. as long as a specified condition is fulfilled.

See also

Trace_Mode_Pause

Example
EVENT:
PAR_1 = ADC(1,4)
IF (PAR_1 > 32768) THEN
TRACE_MODE_RESUME 'Trace mode enabled

'For this program section the trace
'is continously activated

TRACE_MODE_PAUSE 'Trace mode disabled
ENDIF

ValF

ADbasic 5.00, Manual March 2010

ADwin

257

ValF
VALF converts a string into a floating point number.

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = VALF(String[])

Parameters

Notes

If you do not indicate a sign, a positive sign will be assumed.

The character "E" divides mantissa from exponent. With T9 and T10,
in the mantissa only a maximum of 7 characters (pre-decimal and dec-
imal places) are evaluated, with T11 a maximum of 10 characters. If
you have more characters the last of them will be lost. As decimal sep-
arator either the dot or the comma are allowed.

Please note the value range for float values in chapter 4.2.3 on
page 77. Values outside the value range are interpreted as "infinite" or
zero.

If you use illegal characters (characters other than indicated in the for-
mat above) only the strings up to the first illegal sign will be evaluated.

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLeft, StrLen, StrMid, StrRight, ValI

String[] String which is to be converted, in the following format: ARRAY

STRING

Mantissa
(max. 10 characters)

Exponent
(0…99)

{+}
-

vvvvv .
,

nnnnn e
E

{+}
-

nn

ret_val Generated floating point value. FLOAT

ValF

ADbasic 5.00, Manual March 2010

ADwin

258

Example
IMPORT String.LI9

DIM text[20] AS STRING

INIT:
text="-271.8282E-02" 'String to be converted
PAR_1 = text[1] 'String-length
PAR_2 = text[2] 'ASCII-character 2Dh = "-"
PAR_3 = text[3] 'ASCII-character 32h = "2"
PAR_4 = text[4] 'ASCII-character 37h = "7"
PAR_5 = text[5] 'ASCII-character 2Eh = "."
PAR_6 = text[6] 'ASCII-character 31h = "1"
PAR_7 = text[7] 'ASCII-character 34h = "4"
PAR_8 = text[8] 'ASCII-character 31h = "1"
PAR_9 = text[9] 'ASCII-character 35h = "5"
PAR_10 = text[10] 'ASCII-character 39h = "9"
PAR_11 = text[11] 'ASCII-character 45h = "E"
PAR_12 = text[12] 'ASCII-character 2Dh = "-"
PAR_13 = text[13] 'ASCII-character 31h = "1"
PAR_14 = text[14] 'ASCII-character 30h = "0"
PAR_15 = text[15] 'End of string sign

EVENT:
FPAR_1 = VALF(text) 'Convert string to Float

ValI

ADbasic 5.00, Manual March 2010

ADwin

259

ValI
VALI converts a string into an integer number (LONG).

Syntax

IMPORT String.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = VALI(String[])

Parameters

Notes

If you do not indicate a sign, a positive sign will be assumed.

Please note the value range for long values:
-2147483648 to +2147483647
Values outside this range are interpreted as zero.

If you use illegal characters (characters other than indicated in the for-
mat above) the string up to the first illegal characters will be evaluated
only.

See also

String "", + String Addition, Asc, Chr, FloToStr, Flo40ToStr, LngToStr,
StrComp, StrLeft, StrLen, StrMid, StrRight, ValF

String[] String to be converted in the format:
Sign: + (optional) or -.
Pre-decimal places: max. 10 characters.

ARRAY

STRING

{+}
-.

vvvvvvvvvv

ret_val Generated long value. LONG

ValI

ADbasic 5.00, Manual March 2010

ADwin

260

Example
IMPORT String.LI9

DIM text[20] AS STRING

INIT:
text="-1234567890" 'String to be converted
PAR_1 = text[1] 'String-length = 11
PAR_2 = text[2] 'ASCII-character 2Dh = "-"
PAR_3 = text[3] 'ASCII-character 31h = "1"
PAR_4 = text[4] 'ASCII-character 32h = "2"
PAR_5 = text[5] 'ASCII-character 33h = "3"
PAR_6 = text[6] 'ASCII-character 34h = "4"
PAR_7 = text[7] 'ASCII-character 35h = "5"
PAR_8 = text[8] 'ASCII-character 36h = "6"
PAR_9 = text[9] 'ASCII-character 37h = "7"
PAR_10 = text[10] 'ASCII-character 38h = "8"
PAR_11 = text[11] 'ASCII-character 39h = "9"
PAR_12 = text[12] 'ASCII-character 30h = "0"
PAR_13 = text[13] 'End of string sign

EVENT:
PAR_20 = VALI(text) 'Convert string to long

XOr

ADbasic 5.00, Manual March 2010

ADwin

261

XOr
The operator XOR (Exclusive-Or) combines two integer values bitwise.

Syntax

… val_1 XOR val_2 …

Parameters

See also

And, causes the processor to wait for several processor cyclesNot, Or

Example
DIM value AS LONG
EVENT:
value = 0100b XOR 0110b
Rem Result: value = (4 XOr 6) = 0010b = 2

val_1, val_2 Integer value. LONG

FFT Library

ADbasic 5.00, Manual March 2010

ADwin

262

7.3 FFT Library
The FFT library contains ADbasic instructions for Fast Fourier Transforma-
tion. The library runs with processor type T9 or later.

Notes for the use of the library

If arrays are declared in the internal memory (AT DM_LOCAL), the processing
time is clearly smaller. Thus, a calculation of an FFT with 1024 values takes
about 23ms in spite of 35ms (using a T9 processor).

Only use the instructions of the FFT library in a process of low priority or in a
process section LOWINIT: or INIT:. If the calculation of an FFT in a high
priority process takes very long, the PC assumes an error and aborts the com-
munication to the ADwin system with an appropriate error message.
The folder <C:\ADwin\ADbasic\lib\FFT_doc+demo> contains all
examples for the library instructions.

Fast-Fourier Transformations
The Fast Fourier Transformation (FFT) is an algorithm for fast calculation of
a discrete Fourier transformation. The FFT is applicable for a lot of tasks in sig-
nal processing, e.g. to

– Calculate a signal’s frequency spectrum.

– Get the frequency response from an impulse response

– Derive an FIR-filter kernel from the frequency response.

– digital filters.

– Convert a time based signal in vibration technology into a frequency
based state.

– Approximate identification of frequencies in a sampled signal.

Table of contents

Name Function

FFT FFT performs a complex Fast Fourier Transforma-
tion with complex input and output data.

264

FFT Library

ADbasic 5.00, Manual March 2010

ADwin

263

FFT_MAG FFT_MAG returns the magnitudes (modulus) of com-
plex data.

268

FFT_SCALE FFT_SCALE scales the result of an FFT calculation to
the size of the components of the source data.

266

FFT_PHASE FFT_PHASE returns the phase of complex data. 270

FFT_MAG_
SCALE

FFT_MAG_SCALE returns the scaled magnitudes
(modulus) of complex data.

272

FFT_INIT FFT_INIT initializes 2 auxiliary arrays for the calcu-
lation of Fast Fourier Transformations.

273

FFT_CALC FFT_CALC calculates a Fast Fourier Transformation
after previous initialization.

274

FFT_CALC_DM FFT_CALC_DM calculates a Fast Fourier Transfor-
mation after previous initialization and is optimized
for processor T10.

276

FFT_CALC_DX FFT_CALC_DX calculates a Fast Fourier Transfor-
mation after previous initialization and is optimized
for processor T10.

278

Name Function

FFT

ADbasic 5.00, Manual March 2010

ADwin

264

FFT
FFT performs a complex Fast Fourier Transformation with complex input and
output data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT(real[], img[], z_real[], z_img[],
array1[], array2[], count)

Parameters

Notes

The Fourier transformation returns a correct result, if the frequency
components fi of the source data remain inside the following range (re-
ferring to the sampling frequency fsample):

 and

The transformed data, the complex amplitudes of the frequency spec-
trum, is returned in the elements 1…count / 2 of the arrays z_real

real[] Real part of source data. FLOAT

ARRAY

img[] Imaginary part of source data. FLOAT

ARRAY

z_real[] Result: Real parts (index 1…count / 2) of the transfor-
med data. Array size: 4 ×count.

FLOAT

ARRAY

z_img[] Result: Imaginary parts (index 1…count / 2) of the
transformed data. Array size: 4 ×count.

FLOAT

ARRAY

array1[],
array2[]

Arrays for internal calculations.
Array size: 4 ×count.

FLOAT

ARRAY

count Number (≥ 2) of source data points. The number of
points must be a power of 2.

LONG

0 fi≤ fi fsample 2⁄<

FFT

ADbasic 5.00, Manual March 2010

ADwin

265

and z_img. The surplus array elements (up to 4 ×count) are required
for internal calculations and hold intermediate results.

The result of the transformation is not scaled to the size of the com-
ponents of the source data. If scaling is required the transformed data
can be scaled with FFT_SCALE.

The following table shows how the calculated frequency spectrum re-
fers to the element index of the arrays z_real and z_img (normaliza-
tion of the frequency axis), with ttotal as total sampling time.
The example below has a sampling time ttotal = 0.1s; thus, the element
index [1024] refers to the frequency (1024-1) / 0.1s = 10230Hz.

If you need to calculate several FFTs with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times FFT_CALC.

See also

FFT, FFT_Mag, FFT_Scale, FFT_Phase, FFT_Mag_Scale, FFT_Init,
FFT_Calc, FFT_Calc_DM, FFT_Calc_DX

Example

The Example program (for ADwin-Gold and ADwin-light-16)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_demo.bas>

reads the analog signal at input 1 (2048 samples in 0.1s) and calcula-
tes an FFT from it. If for example the signal is a sine of 1000Hz, the ma-
ximum values are stored in data_3[101] (real part) and data_
4[101] (imaginary part).

Element index … …

Frequency [Hz] … …

1[] 2[] i[] count 2⁄[]

0 1
ttotal
---------- i 1–

ttotal
---------- count 2⁄ 1–

ttotal

FFT_Scale

ADbasic 5.00, Manual March 2010

ADwin

266

FFT_Scale
FFT_SCALE scales the result of an FFT calculation to the size of the compon-
ents of the source data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_SCALE(unscaled[], scaled[], count)

Parameters

Notes

The instruction runs according to the formula:

If FFT_SCALE uses the resulting arrays of FFT, you have to set count
= count / 2 (with count is a parameter of FFT).

FFT_SCALE scales the result of an FFT calculation to the size of the
components of the source data. It does not scale the frequency axis of
the spectrum (see the notes of FFT).

See also

FFT, FFT_Mag, FFT_Phase, FFT_Mag_Scale

Example

The example program (for all ADwin systems)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo.bas>

unscaled[] Unscaled data from an FFT calculation. FLOAT

ARRAY

scaled[] Result: Scaled data. FLOAT

ARRAY

count Number of data. LONG

scaled[i] i 1:≠ scaled[i] unscaled[i] n⁄=

i 1:= scaled[i] unscaled[i] n 2⋅()⁄=⎩
⎨
⎧

=

FFT_Scale

ADbasic 5.00, Manual March 2010

ADwin

267

creates a signal from some sine signals, samples the signal, calculates
the FFT, the magnitude and scales the magnitude.

The source signal results from:
• a sine signal of 60 Hz and the amplitude 0.7
• a sine signal of 30 Hz and the amplitude 1.0
• a DC signal with the amplitude 1.5

The amplitudes of the scaled frequency spectrum (see graphic below,
created with TGraph.exe) exactly show the size of the superposed
source signals:
data_6[7] = 1 Index 7: 60 Hz
data_6[4] = 0.7 Index 4: 30 Hz
data_6[1] = 1.5 Index 1: DC signal

All other amplitudes have the value 0 or close to 0 caused by round-
off noise.

FFT_Mag

ADbasic 5.00, Manual March 2010

ADwin

268

FFT_Mag
FFT_MAG returns the magnitudes (modulus) of complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_MAG(real[], img[], magnitude[], count)

Parameters

Notes

The magnitude of a complex value is calculated with the formula:

FFT calculates the amplitudes of a frequency spectrum as complex va-
lues. The instructions FFT_MAG and FFT_PHASE convert the complex
amplitudes into magnitude and phase.

If FFT_MAG uses the resulting arrays of FFT, you have to set count =
count / 2 (with count is a parameter of FFT).

See also

FFT, FFT_Phase, FFT_Mag_Scale

Example

The example program (for ADwin-Gold oder ADwin-light-16)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_mag_demo.bas>

real[] Real part of the complex data. FLOAT

ARRAY

img[] Imaginary part of the complex data. FLOAT

ARRAY

magnitude[] Result: Magnitudes of the complex data. FLOAT

ARRAY

count Number of complex data. LONG

magnitude[i] real[i]2 img[i]2+=

FFT_Mag

ADbasic 5.00, Manual March 2010

ADwin

269

samples the analog signal at input 1 (2048 samples in 0.1s), calculates
the FFT and the magnitudes. If for example the signal is a sine of
1500Hz, the maximum absoute value is stored in Data_5[151].

FFT_Phase

ADbasic 5.00, Manual March 2010

ADwin

270

FFT_Phase
FFT_PHASE returns the phase of complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_PHASE(real[], img[], phase[], count)

Parameters

Notes

The phase of a complex value is calculated with the formula (see also
<math.Inc>):

FFT calculates the amplitudes of a frequency spectrum as complex va-
lues. The instructions FFT_MAG and FFT_PHASE convert the complex
amplitudes into magnitude and phase.

If FFT_PHASE uses the resulting arrays of FFT, you have to set count
= count / 2 (with count is a parameter of FFT).

See also

FFT, FFT_Mag, FFT_Mag_Scale

real[] Real part of the complex data. FLOAT

ARRAY

img[] Imaginary part of the complex data. FLOAT

ARRAY

phase[] Result: Phase of the complex data. FLOAT

ARRAY

count Number of complex data. LONG

phase[i] real[i] 0:≠ phase[i] img[i] real[i]⁄()atan=

real[i] 0:= phase[i] img[i]()sgn π 2⁄⋅=⎩
⎨
⎧

=

FFT_Phase

ADbasic 5.00, Manual March 2010

ADwin

271

Example

The example program (for all ADwin systems)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_phase_demo.bas>

creates 2 phase-delayed sine signals (by π/2), samples the signals,
calulates the FFT, the scaled magnitudes and the phase values.

The calculated frequency spectrum has the following values:
data_6[4] = 1 Index 4: 30 Hz
data_7[4] = -0.018410 Phase about 0

data_26[4] = 1 Index 4: 30 Hz
data_27[4] = 1.552389 Phase about π/2

All other amplitudes have the value 0 and the referring phase values
are undefined.

FFT_Mag_Scale

ADbasic 5.00, Manual March 2010

ADwin

272

FFT_Mag_Scale
FFT_MAG_SCALE returns the scaled magnitudes (modulus) of complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_MAG_SCALE(real[], img[], mag_scal[],
count)

Parameters

Notes

FFT_MAG_SCALE returns the same result as the call of FFT_MAG and
FFT_SCALE, but it is processed faster.

If FFT_MAG_SCALE uses the resulting arrays of FFT, you have to set
count = count / 2 (with count is a parameter of FFT).

See also

FFT, FFT_Mag, FFT_Scale

Example

The example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) is similar to the example <FFT_scale_demo.bas> (see
page 266), but uses FFT_MAG_SCALE instead.

real[] Real part of the complex data. FLOAT

ARRAY

img[] Imaginary part of the complex data. FLOAT

ARRAY

mag_scal[] Result: Scaled magnitudes of the complex data. FLOAT

ARRAY

count Number of complex data. LONG

FFT_Init

ADbasic 5.00, Manual March 2010

ADwin

273

FFT_Init
FFT_INIT initializes 2 auxiliary arrays for the calculation of Fast Fourier
Transformations.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_INIT(array1[], array2[], count)

Parameters

Notes

FFT_INIT is only required and useful, if one of the instructions FFT_
CALC, FFT_CALC_DM or FFT_CALC_DX is called next.

If you need to calculate several FFT with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times FFT_CALC.

See also

FFT, FFT_Calc, FFT_Calc_DM, FFT_Calc_DX

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

array1[],
array2[]

Result: Auxiliary values for internal calculations. Array
size: 4 ×count.

FLOAT

ARRAY

count Number (≥ 2) of source data points. The number of
points must be a power of 2.

LONG

FFT_Calc

ADbasic 5.00, Manual March 2010

ADwin

274

FFT_Calc
FFT_CALC calculates a Fast Fourier Transformation after previous initializa-
tion.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FFT_CALC(real[], img[], z_real[], z_img[],
array1[], array2[], count)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

If you need to calculate several FFT with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times FFT_CALC.

Prczessor T10 only: Instead of FFT_CALC, FFT_CALC_DM or FFT_
CALC_DX may be used to calculate an FFT in shorter time.

real[] Real part of source data. FLOAT

ARRAY

img[] Imaginary part of source data. FLOAT

ARRAY

z_real[] Result: Real parts (index 1…count / 2) of transformed
data. Array size: 4 ×count.

FLOAT

ARRAY

z_img[] Result: Imaginary parts (index 1…count / 2) of trans-
formed data. Array size: 4 ×count.

FLOAT

ARRAY

array1[],
array2[]

Arrays for internal calculations.
Array size: 4 ×count.

FLOAT

ARRAY

count Number (≥ 2) of source data points. The number of
points must be a power of 2.

LONG

FFT_Calc

ADbasic 5.00, Manual March 2010

ADwin

275

See also

FFT, FFT_Init, FFT_Calc_DM, FFT_Calc_DX

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

FFT_Calc_DM

ADbasic 5.00, Manual March 2010

ADwin

276

FFT_Calc_DM
FFT_CALC_DM calculates a Fast Fourier Transformation after previous initia-
lization and is optimized for processor T10.

Syntax

IMPORT FFT.LIA

FFT_CALC_DM(real[], img[], z_real[], z_img[],
array1[], array2[], count)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

FFT_CALC_DM has the same function as FFT_CALC (and FFT_CALC_
DX), but calculates an FFT faster when using the processor T10. This
optimization is not possible for processors T9 or T11.

FFT_CALC_DM may only be used, if the arrays are declared in the in-
ternal memory.
Using the processor T10, the calculation of an FFT with 1024 samples

real[] Real part of source data. The array must be declared AT
DM_LOCAL.

FLOAT

ARRAY

img[] Imaginary part of source data. The array must be decla-
red AT DM_LOCAL.

FLOAT

ARRAY

z_real[] Result: Real parts (index 1…count / 2) of transformed
data. The array must be declared AT DM_LOCAL with
array size: 4 ×count.

FLOAT

ARRAY

z_img[] Result: Imaginary parts (Index 1…count / 2) of trans-
formed data. The array must be declared AT DM_LOCAL
with array size: 4 ×count.

FLOAT

ARRAY

array1[],
array2[]

Arrays for internal calculations. The arrays must be
declared AT DM_LOCAL with array size: 4 ×count.

FLOAT

ARRAY

count Number (≥ 2) of source data points. The number of
points must be a power of 2.

LONG

FFT_Calc_DM

ADbasic 5.00, Manual March 2010

ADwin

277

takes about 11ms instead of 14ms with FFT_CALC. Both timing values
were determined with arrays in the internal memory DM_LOCAL.

See also

FFT, FFT_Init, FFT_Calc, FFT_Calc_DX

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

FFT_Calc_DX

ADbasic 5.00, Manual March 2010

ADwin

278

FFT_Calc_DX
FFT_CALC_DX calculates a Fast Fourier Transformation after previous initia-
lization and is optimized for processor T10.

Syntax

IMPORT FFT.LIA

FFT_CALC_DX(real[], img[], z_real[], z_img[],
array1[], array2[], count)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

FFT_CALC_DX has the same function as FFT_CALC (and FFT_CALC_
DM), but calculates an FFT faster when using the processor T10. This
optimization is not possible for processors T9 or T11.

FFT_CALC_DX may only be used, if the arrays are declared in the ex-
ternal memory.
Using the processor T10, the calculation of an FFT with 1024 samples

real[] Real part of source data. The array should be declared
AT DRAM_EXTERN.

FLOAT

ARRAY

img[] Imaginary part of source data. The array should be
declared AT DRAM_EXTERN.

FLOAT

ARRAY

z_real[] Result: Real parts (index 1…count / 2) of transformed
data. The array should be declared AT DRAM_EXTERN
with array size 4 ×count.

FLOAT

ARRAY

z_img[] Result: Imaginary parts (index 1…count / 2) of trans-
formed data. The array should be declared AT DRAM_
EXTERN with array size 4 ×count.

FLOAT

ARRAY

array1[],
array2[]

Arrays for internal calculations. The arrays should be
declared AT DRAM_EXTERN with array size 4 ×count.

FLOAT

ARRAY

count Number (≥ 2) of source data points. The number of
points must be a power of 2.

LONG

FFT_Calc_DX

ADbasic 5.00, Manual March 2010

ADwin

279

takes about 49ms instead of 53ms with FFT_CALC. Both timing values
were determined with arrays in the external memory DRAM_EXTERN.

See also

FFT, FFT_Init, FFT_Calc, FFT_Calc_DM

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

FFT_Calc_DX

ADbasic 5.00, Manual March 2010

ADwin

280

Mathematics Instructions

ADbasic 5.00, Manual March 2010

ADwin

281

7.4 Mathematics Instructions
The include file math.inc contains additional mathematics instructions,
which are not part of the instruction set of the ADbasic compiler.
The instructions are available for processors since type T9.

Mathematics instructions

Name Function

MOD MOD returns the integer remainder of an integer divi-
sion.

282

Mod

ADbasic 5.00, Manual March 2010

ADwin

282

Mod
MOD returns the integer remainder of an integer division.

Syntax

INCLUDE Math.inc

val = MOD(x_param, y_param)

Parameters

Notes

The remainder calculation performs the truncated division, where the
quotient is defined by truncation. With this definition the quotient is
rounded towards zero and the remainder has the same sign as the div-
idend.

The integer remainder of a division by zero equals the dividend:
MOD(x,0) = x.

The execution time of the modulo function takes up to 3.5µs with a T9,
up to 1.67µs with a T10, and 0.44µs with a T11 (high priority).

See also

/ Division, AbsI

Example
PAR_1 = MOD(17, 3) 'PAR_1 = 2
PAR_2 = MOD(-9, 5) 'PAR_2 = -4
PAR_3 = MOD(72, PAR_2) 'PAR_3 = 3

x_param Dividend. LONG

y_param Divisor. LONG

val Remainder of the division x_param / y_param. LONG

How to Solve Problems?

ADbasic 5.00, Manual March 2010

ADwin

283

8 How to Solve Problems?
If problems already occur during installation, please refer to the documen-
tation for your ADwin system. Make sure all settings have been carried out
properly and completely. Also check if the base address, the processor type,
etc. are set correctly in the menu Options\Compiler. If your problems still
persist, please give your local technical support office a call.
If you need help of a more substantial nature, you can contact us directly; you
find the address inside the manual’s cover page.

How to Solve Problems?

ADbasic 5.00, Manual March 2010

ADwin

284

Short-Cuts in ADbasic

ADbasic 5.00, Manual March 2010

ADwin

A-1

Appendix
A.1 Short-Cuts in ADbasic
To display short-cuts of code snippets, open <ADbasicCS.xml> in the folder
C:\ADwin\ADbasic\Common\ with a browser.

Short cut key Function Matching menu item
F1 Show help topic for marked

instruction.
CTRL-F1 Show online help content. Help Content

F2 Show dec la ra t ion o f
marked instruction.

CTRL-F2 Jump to declarat ion of
marked instruction.

F3 Find next forward. Edit Find Next
SHIFT-F3 Find next backwards.
CTRL-F3 Find Text at cursor position

forward.
CTRL-SHIFT-F3 Find Text at cursor position

backwards.
CTRL-F5 Boot ADwin system.

F6 Create library. Build Make Lib File
F7 Create binary file. Build Make Bin File

CTRL-F7 Create binary files of the
project.

Build Make All Bin
Files

F8 Compile source code. Build Compile
CTRL-F8 Start process.

F9 Stop process.
CTRL-SPACE Insert or complete a decla-

ration.
CTRL-SHIFT-SPACE Show parameters of a sub /

function.
CTRL-A Select all. Edit Select All
CTRL-B Comment marked lines Source context menu:

Comment Block

Short-Cuts in ADbasic

ADbasic 5.00, Manual March 2010

ADwin

A-2

Legend:

A-B: Press keys A and B at the same time.

A+B: Press key A first, release and then press key B.

CTRL-SHIFT-B Uncomment marked lines Source context menu:
Uncomment Block

CTRL-C Copy. Edit Copy
CTRL-F Find text. Edit Find
CTRL-G Jump to a line.
CTRL-H Replace text. Edit Replace
CTRL-I Indent marked lines Source context menu:

Indent
CTRL-SHIFT-I Outdent marked lines Source context menu:

Outdent

CTRL-N New source code file. File New
CTRL-O Open source code file. File Open
CTRL-P Print source code file. File Print
CTRL-R Colour mark used parame-

ters
Parameter window:
Icon

CTRL-S Save source code file. File Save
CTRL-V Paste. Edit Paste
CTRL-X Cut. Edit Cut
CTRL-Z Undo input. Edit Undo

CTRL-SHIFT-Z Redo input. Edit Redo
CTRL-K + K Insert / delete bookmark.
CTRL-K + N Jump to next bookmark.
CTRL-K + P Jump to previous book-

mark.
CTRL-K + X Insert a code snippet.

Short cut key Function Matching menu item

ASCII-Character Set

ADbasic 5.00, Manual March 2010

ADwin

A-3

A.2 ASCII-Character Set

! " # $ % & '

() * + , - . /

1 2 3 4 5 6 7

8 9 : ; < = > ?

0

A B C D E F G

H I J K L M N O

@

Q R S T U V W

X Y Z [\] ^ _

P

a b c d e f g

h i j k l m n o

`

q r s t u v w

x y z { | } ~ �

p

(g)

BS1 TAB2 LF3 CR4

NUL SOH STX ETX EOT ENQ ACK BEL

VT FF SO SI

CAN EM SUB GS

DLE DC1 DC2 DC3 DC4 NAK SYN ETB

ESC FS RS US

SPC5

00h 0 01h 1 02h 2 03h 3 04h 4 05h 5 06h 6 07h 7

08h 8 09h 9 0Ah 10 0Bh 11 0Ch 12 0Dh 13 0Eh 14 0Fh 15

10h 16 11h 17 12h 18 13h 19 14h 20 15h 21 16h 22 17h 23

18h 24 19h 25 1Ah 26 1Bh 27 1Ch 28 1Dh 29 1Eh 30 1Fh 31

20h 32 21h 33 22h 34 23h 35 24h 36 25h 37 26h 38 27h 39

28h 40 29h 41 2Ah 42 2Bh 43 2Ch 44 2Dh 45 2Eh 46 2Fh 47

30h 48 31h 49 32h 50 33h 51 34h 52 35h 53 36h 54 37h 55

38h 56 39h 57 3Ah 58 3Bh 59 3Ch 60 3Dh 61 3Eh 62 3Fh 63

40h 64 41h 65 42h 66 43h 67 44h 68 45h 69 46h 70 47h 71

48h 72 49h 73 4Ah 74 4Bh 75 4Ch 76 4Dh 77 4Eh 78 4Fh 79

50h 80 51h 81 52h 82 53h 83 54h 84 55h 85 56h 86 57h 87

58h 88 59h 89 5Ah 90 5Bh 91 5Ch 92 5Dh 93 5Eh 94 5Fh 95

60h 96 61h 97 62h 98 63h 99 64h 100 65h 101 66h 102 67h 103

68h 104 69h 105 6Ah 106 6Bh 107 6Ch108 6Dh109 6Eh 110 6Fh 111

70h 112 71h 113 72h 114 73h 115 74h 116 75h 117 76h 118 77h 119

78h 120 79h 121 7Ah 122 7Bh 123 7Ch124 7Dh125 7Eh 126 7Fh 127
1 Backspace, 2 Tabulator, 3 Linefeed,

4 Carriage Return, 5 Space

License Agreement

ADbasic 5.00, Manual March 2010

ADwin

A-4

A.3 License Agreement
Between the buyer of ADbasic – termed the Licensee –
and Jäger Computergesteuerte Messtechnik GmbH, Rheinstraße 2 - 4, 64653
Lorsch – termed hereinafter Jäger Messtechnik GmbH – the following license
agreement is concluded:

1. OBJECT OF THE LICENSE AGREEMENT

1.1 Object of the license agreement is the software of the compiler and the
development system ADbasic (hereinafter termed ADbasic software)
as well as the printed user manual "ADbasic: The Real-Time Develop-
ment Tool for ADwin Systems" (hereinafter termed "printed materials").

1.2 The company Jaeger Messtechnik GmbH draws your attention to the
fact that it is not possible according to the state of the art to develop
computer software in such a way that no errors occur in all applications
and combinations. Only a computer software which is basically practi-
cable according to the user documentation is object of the license
agreement.

2. EXTENT OF USAGE

2.1 Jaeger Messtechnik GmbH grants the Licensee a single, non-exclu-
sive and individual right of use. This means that you may use the enclo-
sed copy of the ADbasic software only on a single computer and only
in one single location. The Licensee may transfer the ADbasic software
in physical form (that is stored on a storage device) from one computer
to another computer, provided that it is only used individually on one
single computer at any time. A usage other than these restrictions is
not permitted.

2.2 Programs generated by the Licensee with the ADbasic software, may
be distributed and used without restriction.

3. SPECIAL RESTRICTIONS
The Licensee is not permitted to

a) pass or otherwise give to any third party access to the ADbasic soft-
ware without prior written consent of Jaeger Messtechnik GmbH,

b) electronically transfer the ADbasic software from one computer to
another over a network or a data transfer channel,

License Agreement

ADbasic 5.00, Manual March 2010

ADwin

A-5

c) change or modify, translate, reverse engineer, decompile or disassem-
ble the ADbasic software without prior written consent of Jaeger Mes-
stechnik GmbH.

4. OWNERSHIP

4.1 Upon purchasing the product, only title to the physical storage device,
where the ADbasic software has been stored, is passed to the Licen-
see. No title to the rights of the ADbasic software itself is passed to the
Licensee.

4.2 Jaeger Messtechnik GmbH reserves all rights for publication, copying,
processing and commercialization of the ADbasic software.

5. COPYRIGHTS

5.1 The ADbasic software and the printed materials are protected by copy-
right.

For backup purposes the Licensee may generate a single copy of the
ADbasic software. He must reproduce the copyright notice of Jaeger
Messtechnik GmbH on the copy. The copyright notice on the ADbasic
software must not be removed.

5.2 It is expressly not permitted to fully or partially copy or reproduce the
ADbasic software as well as the printed materials in its original or modi-
fied form or merged or included in other software.

6. GRANT OF LICENSE

6.1 The right to use the ADbasic software can only be granted to a third
party with prior written consent of Jaeger Messtechnik GmbH. The
Licensee must then completely delete the software which he has
installed and pass it to the third party. (The transfer has to include the
original data carrier with the documentation, backup version included).
The license may furthermore only be transferred to a third party, if the
latter agrees for the benefit of Jaeger Messtechnik GmbH to the terms
and conditions of this License Agreement and to the General Conditi-
ons of the company Jaeger Messtechnik GmbH.

6.2 You must not rent, lease or lend the ADbasic software.

7. PERIOD OF AGREEMENT

7.1 The period of the License Agreement is unlimited.

7.2 The right of the Licensee for using the ADbasic software voids auto-
matically without notice of termination, if he violates a condition of this

License Agreement

ADbasic 5.00, Manual March 2010

ADwin

A-6

License Agreement. Upon termination of the license, the Licensee
must destroy the original data medium and all copies of the ADbasic
software, possible modified copies included, as well as the printed
materials.

8. CLAIM FOR DAMAGES AND PENALTY UPON VIOLATION OF THE
CONTRACT

8.1 If the Licensee violates conditions of this License Agreement he must
pay damages.

8.2 Notwithstanding, Jaeger Messtechnik GmbH will charge a penalty of
20,000.00 EURO for violation of the copyright, unauthorized usage of
the software, and unauthorized distribution of the software to third par-
ties.

8.3 The title to omission on completion of the contract is not influenced by
the claim for damages and the penalties.

9. MODIFICATIONS AND UPDATES
Jaeger Messtechnik GmbH is entitled to update the ADbasic software upon its
own discretion. Jaeger Messtechnik GmbH is not obliged to have updates of
the ADbasic software available for the Licensee.
For extensive updates Jaeger Messtechnik GmbH reserves the right to charge
an additional fee.

10. WARRANTY AND LIABILITY OF JAEGER MESSTECHNIK GMBH

a) Jaeger Messtechnik GmbH assumes warranty to the Licensee that at
the moment of delivery the data medium, on which the ADbasic soft-
ware is stored, is error-free in accordance with the accompanying
materials, when applied under normal operating conditions and under
normal maintenance conditions.

b) If the data medium is faulty, the Licensee is granted a replacement
within the warranty period of 6 months from the date of delivery. He
must return the data medium as well as a copy of the invoice to Jaeger
Messtechnik GmbH or to the distributor from whom he has purchased
the product.

c) If a fault as described in Section 10 b) is not eliminated within an ade-
quate period of time by replacement of the product, the Licensee may
choose between either allowance (price reduction) or conversion
(rescission of the License Agreement). The Licensee is not entitled to
any further claims.

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-7

d) For the reasons mentioned in Section 1.2 Jaeger Messtechnik GmbH
does not assume liability for the absence of defects with regards to the
ADbasic software. In particular Jaeger Messtechnik GmbH does not
assume warranty for the fact that the ADbasic software meets the
requirements and purposes of the Licensee or is compatible to other
programs he is working with. The Licensee is responsible for the cor-
rect choice and the consequences of using the ADbasic software, as
well as for the results he intends to obtain or has obtained. The same
applies for the printed materials which are delivered with the ADbasic
software.

e) Jaeger Messtechnik does not assume liability for damages, unless
Jäger Messtechnik GmbH has caused damages by intention or by
gross negligence. Liability because of properties assured by Jaeger
Messtechnik GmbH remains unaffected. Liability is excluded for con-
sequential damages, which are not part of the assurance given above.

f) Jaeger Messtechnik GmbH does not assume liability for damages
caused by viruses, which are passed on by the data medium. The
Licensee is hold responsible for checking the data medium for viruses,
before installing the ADbasic software on his computer.

11. FINAL CONDITIONS
The invalidity of some individual conditions does not affect the validity of the
License Agreement.
In addition to the conditions of this License Agreement the General Terms and
Conditions of Jaeger Messtechnik GmbH apply.

A.4 Command Line Calling
The ADbasic compiler cannot only be activated through the user interface, but
it can also be directly called in Windows or DOS (with a so-called "command
line call"). The compiler works the same in both cases, it can compile a source
code file and generate a binary or library file.
The compiler will only be called after you have entered your license key in
ADbasic.
The command line call has changed since ADbasic 4. Thus, you have to check
the syntax of previously written calls.
Please note the general hints about Command line calls in Windows on
page 12.

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-8

A.4.1 Syntax
There are command line calls to create binary files (main option /M) and to
create a library file (main option /L).
You add command line options, beginning with a slash /, some of which have
optional parameters. If an option is missing, the compiler will use a default set-
ting; nevertheless, we recommend to type all options to avoid ambiguities1.
As an alternative, options of a single call may be written into a makefile and
the compiler called with main option /MAKE.
At last there are the main options /H to display a short help text, and /VER to
display the compiler version number.
The command line call is entered in a single line; option letters are case sen-
sitive.

Syntax

ADbasicCompiler /M src.bas
[/A"dest"] [/IP"path"] [/LP"path"] [/Lx] [/Sx] [/Px]
[/ET | /EE] [/PNx][/PH | /PL | /PLx] [/PDx] [/Ox]
[/Vx]

ADbasicCompiler /L src.bas
[/A"dest"] [/IP"path"] /LP"path"] [/Lx] [/Sx] [/Px]
[/Ox]

ADbasicCompiler /MAKE"makefile"

ADbasic /H

ADbasic /VER

Optional settings are given in brackets []. The character | separates options,
which are mutually exclusive.
File names can be written without, with relative or with absolute path names.
The base directory for a file name without or with relative path name is the
working directory, from which the command line is called.

1. As an example, a call with all options given remains correct, even when a
default setting is being changed.

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-9

Main Options

Options

/M Generate a binary file with the extension .Txn.

x Processor type; see option /Px.

n Process number; see option /PNx.

/L Generate a library file with the extension .LIx .

x Processor type; see option /Px.

/MAKE Read main option, file name and other options of a single
call from the makefile.
The text in the makefile may be written using several
lines. Options outside the makefile are not permitted

/H Display a short help text.

/VER Display compiler version number.

src.bas File name of the source code to be compiled; type with
suffix .bas.
Compiler warnings are written into the file src.wrn,
error messages into the file src.err.

/A"dest" [Path and] name of the binary or library file <dest>
which is to be generated, without suffix. The default is the
file name src.
The file suffix .Txn (binary file) or .LIx (library file) is
attached automatically.

/IP"path" Directory, where include files are searched.
This setting overwrites the ADbasic standard directory
and should thus be used with caution.

/LP"path" Directory, where library files are searched.
This setting overwrites the ADbasic standard directory
and should thus be used with caution.

/Lx Language for warnings and error messages.
/LE
/LG

English. Default.
German

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-10

/Sx Hardware, for which the file is compiled:
/SC
/SL
/SG
/SGII
/SP
/SPII

Cards
Light-16
Gold; Default
Gold II
Pro
Pro II

/Px Processor type, for which the file is compiled:
/P2
/P4
/P5
/P8
/P9
/P10
/P11

Processor T2
Processor T4
Processor T5
Processor T8
Processor T9; Default
Processor T10
Processor T11

/ET Create timer triggered process, see also chapter 6 on
page 110. Default.
Excludes /EE.

/EE Create externally triggered process, see also chapter 6
on page 110.
Schließt /ET aus.

/PNx Number x (1…10) of the process. Default: 1.
/PH Create process with high priority. Default. See also chap-

ter 6.1.2 on page 112.
/PL Create process with low priority and priority level 1 (time

triggered process only). See also chapter 6.1.3 on
page 112.

/PLx Create process with low priority and priority level x
(-10…10).

/PDx Set cycle time (Processdelay) of the process to x.
Default: 1000, T11: 3000. See also chapter 6.2.1 on
page 115.

/Ox Set optimize level x (0, 1, 2) of the compiler, see also
Process Options dialog box (page 42).
/O0
/O1
/O2

Optimize level 0 (=don’t optimize)
Optimize level 1 (Default)
Optimize level 2

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-11

A.4.2 Notes
The order of options is arbitrary. Command line calls are case sensitive.
If option /A is not used, the generated binary or library file is saved in the same
directory, as the source code.
If warnings or errors occur during compilation, they are saved in the files
<src.WRN> and <src.ERR>. The error messages are the same as those that
ADbasic displays in the info window (see chapter 3.9.1 on page 62).
The files <src.WRN> and <src.ERR> are saved in the same directory, as the
source code. If you use the option /A, the files are saved in the directory where
the binary or library file is created.
We recommend you delete the files containing the warnings and error mes-
sages before compilation, so that you can very easily check if the compilation
has proceeded without any errors.

A.4.3 Examples
C:\ADwin\ADbasic\ADbasiccompiler.exe /L
Z:\Myfiles\test.bas

This command line compiles the source code <test.bas> and gen-
erates the library file <test.LI9> in the directory <Z:\Myfiles\>.
Since nothing else is indicated, the default setting is used:

• save generated file in the directory of the source code file.
• use english warnings and error messages.
• Hardware: ADwin-Gold.
• Processor: T9.
• Optimize level: 1.

If you do the call from the directory <C:\ADwin\ADbasic>, you can
shorten this line to:
ADbasicCompiler.exe /L Z:\Myfiles\test.bas

The shortest version is when the source code is stored in the directory
<C:\ADwin\ADbasic> (here without file name extension):
ADbasicCompiler /L test.bas

Anyway, we recommend the complete version–at least for automation
of the call:
ADbasiccompiler /L test.bas /A"test" /LE /SG /P9 /O1

ADbasiccompiler /L Z:\Myfiles\String.bas /SP /O1

/Vx Set process version x, see Process Options dialog box
(page 42). Default: 1.

Command Line Calling

ADbasic 5.00, Manual March 2010

ADwin

A-12

This command line compiles the source code <string.bas> into a li-
brary file for a Pro system with processor T9. It is a timer triggered pro-
cess with number 1 and high priority.
The same call, for processor T10 only, is as follows:
ADbasiccompiler /L Z:\Myfiles\String.bas /P10 /SL /O1

ADbasicCompiler /M C:\ADwin\ADbasic\samples_ADwin\bas_
dmo6f.bas /LE /SG /P9 /ET /PN3 /PH /O1

Compiles the demo file <bas_dmo6f.bas> into a binary file for a Gold
system with T9 processor. It is a timer triggered process with number
3 and high priority.

ADbasiccompiler /M C:\ADwin\ADbasic\samples_ADwin\bas_
dmo6 /LE /P8 /SL /O1

Compiles the demo file <bas_dmo6.bas> into a binary file for a Light-
16 card with processor T8, without optimization. It is a timer triggered
process with number 2 and low priority

C:\ADwin\ADbasic\ADbasic /M C:\user\my_file.bas /LE /P4
/SC /A"your_file" /O1

This instruction compiles the file <my_file.bas> for an ADwin-Card with
processor T4. It is an externally triggered process with number 5 and
low priority. The generated binary file has the name <your_
file.T45> and can be found in the same directory where the source
code is saved: <C:\user>.

ADbasicCompiler /M C:\user\my_file.bas /LE /SG /P9
/A"Y:\somewhere\your_file" /ET /PN3 /PH /O1

The binary file now is saved as <Y:\somewhere\your_file.T93>;
It is a timer triggered process with number 3 and high priority .

A.4.4 Command line calls in Windows
The term and functionality "command line call" come from DOS, where com-
mands to the operating system DOS had to be entered in command lines.
Entering such command lines is still possible under Windows.
There are several ways to enter commands under Windows:

– Open a Command Prompt window (from Windows start menu, direc-
tory Programs / Accessories).

Obsolete Program Parts

ADbasic 5.00, Manual March 2010

ADwin

A-13

The compiler call needs the Windows environment anyway. Thus, the
call works only from the Command Prompt window, not from original
DOS-mode.

– Select Run in the start menu and enter a command line in the input win-
dow.

– For frequently needed command lines create an icon on the desktop.
When you generate an icon enter the command line directly.

One or more command lines can be combined in one batch file <*.bat> , for
example in order to compile several source code files of a project with only one
call.
When you call a command line you have to transfer the relevant options and
parameters.

A.5 Obsolete Program Parts
For compatibility reasons the development environment also offers settings
for ADwin systems with transputer processors (T4, T5, T8).

Dialog Window Process Options
In this dialog window you set compiler options for the currently open source
code window, that is you set the properties of the process, which is compiled
from the current source code and transferred to the ADwin system.
You must make the necessary settings separately for each of the source code
windows by opening the dialog window again (unless you want to use the
default settings).
If you have set the processor types T4, T5 or T8 in the dialog window Compiler
Options, the dialog window shown in fig. 1 is opened.

Obsolete Program Parts

ADbasic 5.00, Manual March 2010

ADwin

A-14

Fig. 1 – The Dialog Window Process Options for processors T4 … T8

– Event: Here you set which event signal is to start the section EVENT:
of your process.

With the setting Timer you define the number of counts of the internal
counter as the event signal. In this case you use the system variable
PROCESSDELAY to define time intervals which triggers an event signal.

With Extern you determine that a signal at the event input of your AD-
win hardware starts the process. This could be for instance an impulse
of a sensor. Such a process must run at high-priority. In this case set
the option Priority to High.

How to use an external event input with an ADwin-Pro system, is de-
scribed in the software documentation under EVENTENABLE.

Obsolete Program Parts

ADbasic 5.00, Manual March 2010

ADwin

A-15

With the setting None the process starts immediately after it has been
transferred to the system. The section EVENT: is – independent of any
event signals – it is restarted immediately after the execution (infinite
loop).
In a high-priority process you have to assure that the process also pro-
vides computing time for other tasks (e.g. communication with the
computer).

– Process: Set the number (1…10), with which the transferred process
is accessed on the system.

If several processes are running simultaneously on the ADwin system,
you must assign a separate number to each of the processes.

– Number of Loops: If you like, you can set here the number of times
the program cycles through the event loop before it stops. When this
number is reached, the process stops automatically. A setting you
have changed will be active upon the next start of the process (not in
the currently running process), you needn’t recompile your program.

If you enter the value "0", the program is repeated until you stop the
process with:

• the instruction END,
• the instruction STOP_PROCESS or
• the stop icon in the development environment.

– Version: Here you enter an integer value, in order to differentiate
between different versions of your program.

– Priority: Set here the priority of the process. You will find more infor-
mation about this subject in chapter 6.1 "Process Management". The
setting Level does not exist for the transputer processor type.

– Control long Delays for Stop: This setting is only available when
you use the processors T2 ... T8.

The stopping of a process is delayed, if it is not called frequently (cycle
time interval > 5 milliseconds). We recommend you use the option in
this case, because this option will speed up the stop procedure.

– Optimize: The optional optimization shortens the process execution
time of up to 20 percent. A higher setting under Level leads to shorter
execution times.

Obsolete Program Parts

ADbasic 5.00, Manual March 2010

ADwin

A-16

If unexpected compiler or run-time errors occur, you can sometimes
avoid them by setting a lower Level for the optimization.

– Delay: Set here the processdelay (cycle time), before the process is
to begin.

List of Debug Error messages

ADbasic 5.00, Manual March 2010

ADwin

A-17

A.6 List of Debug Error messages
The following error messages can be displayed, if the option Debug mode is
enabled in ADbasic; see Debug mode Option, page 52.
1
Run-time error

Division by zero

SQRT from negative number

Data n: Index is too large / Data n: Index is less than 1
Array index is too large / Array index is less than 1
Access to local or global array elements which are not declared, i.e. with
indices that are too large or too small.
A trailing (inc) in the error message is an additional hint for our support
where the error has been detected.

Fifo index is no fifo
The array with the given index is not declared as FIFO or not declared at all.

Address of Pro II module is >15 or <1

P2_Burst_xxx1: "startadr" is not divisable by 4

P2_Burst_xxx1: Number of values is not divisable by 4

P2_Burst_INIT: Number of values is not divisable by 4 / by 8

P2_Burst_Read_Unpacked1: Number of values is not divisable
by 8

P2_Burst_Read_Unpacked2: Number of values is not divisable
by 4

P2_Burst_Read_Unpacked8: Number of values is not divisable
by 2

P2_Burst_Read: Number of values smaller than 1 / than 4

P2_GetData/SetData_Long: TiCo DATA does not exist

P2_GetData/SetData_Long: TiCo DATA has wrong datatype

P2_GetData/SetData_Long: TiCo DATA index too large

P2_GetData/SetData_Long: TiCo DATA index < 1

P2_Digout_FIFO_Write: timestamp difference < 2

List of Debug Error messages

ADbasic 5.00, Manual March 2010

ADwin

A-18

1. Valid for P2_BURST_INIT, P2_BURST_READ, P2_BURST_WRITE

Media_Read / Media_Write:
start_block + count_blocks128 > num_blocks
start_block < 0

Access to an invalid range of the storage media, with a block number that is
too large or too small

Run-time error

Index

ADbasic 5.00, Manual March 2010

ADwin

A-19

A.7 Index
 Mod · 282

Symbols
- · 127
· 132
#Define · 153
#Else · 181
#EndIf · 181
#If · 181
#Include · 186
* · 128
+ · 125
+ (String) · 126
.NET · 122
/ · 129
: · 133
< = > · 135
= · 134
^ · 130
’ (Rem) · 226

Numerics
150h, see device no.
2-dimensional arrays · 85
40 bit accuracy · 78

A
AbsF · 136
AbsI · 137
absolute value

floating point number · 136
integer number · 137

ActiveX · 122
communication to ADwin

system · 121
use from a development

environment · 122
ADbasic

demo mode · 9
license agreement · 4
start · 9

ADbasic 4
save as · 7

ADbasic 4: changes · 5
ADbasicCompiler, command line · 8
ADconfig · 121
Add Open Files to Project · 57
Add to Project

context menu · 16
project window · 57

addition · 125
additional memory (EM) · 85
ADtools · 70
ADtools, set bar · 48
ADWIN_CARD · 181
ADWIN_GOLD · 181
ADWIN_GOLDII · 181
ADWIN_L16 · 181
ADWIN_PRO · 181
ADWIN_PROII · 181
ADWIN_SYSTEM · 181
ADwin32.dll · 121
analyze

general · 105
run-time error · 106
timing · 106

And · 138
arc cosine: ArcCos · 140
arc sine: ArcSin · 141
arc tangent: ArcTan · 142

Index

ADbasic 5.00, Manual March 2010

ADwin

A-20

arithmetic functions
- · 127
* · 128
+ · 125
/ · 129
^ · 130
Dec · 152
Exp · 162
Inc · 185
LN · 199
Log · 202
Sqrt · 236

Array-Index (local) too large / <1,
see run-time error

arrays
2-dimensional · 85
allocate memory area · 83
copy · 208
DATA_n · 150
FIFO · 163
global · 80

first element · 81
initialize · 75
local · 82

first element · 83
overview · 76

(Dim) AS · 155
Asc · 143
ASCII-character set · 3
assign a value · 79
assignment (=) · 134
(Dim …) AT · 155
autocomplete, instruction or

variable · 30
autoindent · 45
automatical type conversion · 94
AutoSave · 39
autostart · 39

B
backslash (escape sequence) · 91

bar, menu · 36
base e · 162

binary file
see also library
create · 39

from ADbasic · 39
from command line · 8

transfer to TiCo processor · 34
use from development

environment · 122
binary notation · 79
bit shifting

left · 231
right · 232

bookmark · 28
booting · 11
bootloader

programming · 34
break, see stop process
BTL file

directory settings · 47
busy display · 61
bypass waiting time · 210

C
C#.NET, C++ · 122
carriage return (escape

sequence) · 91
case sensitivity · 15
Case, CCase, CaseElse (Select-

Case …) · 229
Cast_FloatToLong · 144
Cast_LongToFloat · 145
change license key · 9
check

number and priority of
processes · 107

Chr · 146
clear parameter scan · 34
code size · 62

Index

ADbasic 5.00, Manual March 2010

ADwin

A-21

code snippets · 31
color settings · 46
command line

call · 7
line length

standard · 72
with #Include · 186

upper case / lower case · 72
Comment Block · 19
comment, see remarks
communication

between processes · 120
process in the ADwin

system · 113
time-Out · 113
with a development

environment · 122
with the PC · 121

comparison
< = > · 135
strings · 243

compiler
AutoSave · 39
call · 39
command line call · 7
compiler message, error /

status · 62
preprocessor statement · 132
set options · 40

compiler instructions
#Define · 153
#If … Then · 181
#Include · 186

conditional jump
If … Then · 179
SelectCase · 229

constant · 74

context menu
project window · 57
source code window · 16

control block
context menu · 16
mark · 28

control characters In strings · 90
control structures · 96

toggle folding · 19
cosine: Cos · 147
counter

internal, clock cycle · 115
read · 225

CPU_Sleep · 148
cursor position · 61
cut off decimal places · 94
cycle time · 115

D
data exchange

between processes · 120
with the development

environment · 122
with the PC · 121

data loss
FIFO · 87
from booting · 11

data memory
see also memory
2-dim. arrays in ~ · 86
additional demand by

debug mode · 106
timing mode · 109

allocate · 83
overview, internal, external · 84

data structure
global arrays

memory fragmentation · 113

Index

ADbasic 5.00, Manual March 2010

ADwin

A-22

data structures
FIFO · 87
global arrays · 80
global arrays, 2-dimensional · 85
global variables · 79
local variables and arrays · 82
overview · 76

data types
overview · 77
string · 88
type conversion · 94

data word, numbering of bits · 2
Data_n · 80

dimensioning · 155
global arrays, 2-dimensional · 85
overview · 150

Data-Index (global) too large / <1,
see run-time error

debug
general · 105
debug mode · 106
enable timing mode · 48
menu · 48
timing mode · 106
timing window · 48, 64
Trace_Mode_Pause · 255
Trace_Mode_Resume · 256

debug errors · 52
debug mode · 52
Dec · 152
decimal logarithm · 202
decimal notation · 79
decimal places, cut off · 94
decimal separator · 79
declaration

jump to · 29
see dimensioning
show all · 32
show single info · 32

declarations
display all · 69

decrement · 152
Define, see #Define
definition of macros, position in the

program · 75
Delphi · 122
demo mode · 9
design of an ADbasic program · 72
development environment

bars and windows · 12
communication with C, Delphi,

Matlab etc. · 122
directory settings · 47
short-cuts · 1
source directory · 11
start · 9

device no.
definition · 121
set · 41

DIAdem · 122
Dim · 155
dimensioning

instruction Dim · 155
memory area · 83
position in the program · 75

directory
with standard installation · 11

directory settings · 47
Disable Trace · 16
disable trace mode · 255
display

all declarations · 32
current information · 14
memory usage: CPU, PM, EM,

DM, DX · 61
passed parameters · 32
single declaration info · 32
syntax highlighting · 18

display declarations · 69

Index

ADbasic 5.00, Manual March 2010

ADwin

A-23

division
by 2 · 232
remainder · 282
simple · 129

Division by zero, see run-time error
DM, see memory
DM_LOCAL

Dim · 155
Do … Until · 158
DRAM_EXTERN

Dim · 155
DRAM_Extern

Event · 160
Finish · 169
Init · 188
LowInit · 203

DX, see memory

E
editor

general · 45
print settings · 47
syntax highlighting · 46

editor bar · 17
e-function Exp · 162
Else (If … Then) · 179
EM, see memory
EM_LOCAL

Dim · 155
EM_Local

Event · 160
Finish · 169
Init · 188
LowInit · 203

Enable Trace · 16
enable trace mode · 256
End · 159
EndFunction · 176
EndIf (If … Then) · 179
EndSelect (SelectCase …) · 229
EndSub · 251

enter license key · 9
equal to = · 135

error
see also run-time error
data loss with FIFO · 87
forced by Cut&Paste · 38
process overwritten · 112
run-time · 52
time-Out · 113
try lower optimization level · 44

error message, compiler · 62
escape sequence · 90
Ethernet · 121
evaluate

operators · 92
Event

external signal: reset · 227
lost event signals: check · 51, 66
lost signal

externally controlled
process · 120

several time-controlled
processes · 119

single time-controlled
process · 119

measure time difference · 100
program section · 160
set signal source · 43

event
external signal · 110

exclusive Or operation · 261
Exit · 161
exponential function: Exp · 162
exponential notation · 79
expressions

evaluate · 92
separate evaluation · 95
symbolic names · 74

extensive initialization · 74
external data memory (DX) · 85

Index

ADbasic 5.00, Manual March 2010

ADwin

A-24

external event signal · 110
external memory (SDRAM) · 84

F
F1: call help · 15
FFT · 264
FFT_Calc · 274
FFT_Calc_DM · 276
FFT_Calc_DX · 278
FFT_Init · 273
FFT_Mag · 268
FFT_Mag_Scale · 272
FFT_Phase · 270
FFT_Scale · 266
FIFO

check number of elements · 88
data loss · 87
design of data structure · 87
dimensioning · 155
initialize · 165
overview · 163
query empty elements · 167
query full elements · 168

FIFO_Clear · 165
FIFO_Empty · 167
FIFO_Full · 168
file name

binary file · 39
library · 40

find
declaration of

instruction/variable · 29
examples · 24
regular expressions · 26
text · 21
text quickly · 21

Finish: · 169
Flo40ToStr · 172

floating-point numbers
decimal notation · 79
exponential notation · 79
value range · 78

FloToStr · 170
fold text ranges · 19
font settings · 46
For … Next · 174
format, smart · 18
Fourier transformation

FFT · 264
FFT_Calc · 274
FFT_Calc_DM · 276
FFT_Calc_DX · 278
FFT_Init · 273
FFT_Mag · 268
FFT_Mag_Scale · 272
FFT_Phase · 270
FFT_Scale · 266

FPar_n · 79
fragmentation, memory · 113
Function · 176

library
definition · 191

macro · 176
position in the program · 75

function
general features · 96
library

general · 97

G
global arrays, see arrays, global
global variables · 67
global variables, see variables, glo-

bal
Globaldelay · 220
goto line · 29
greater than >, >= · 135

Index

ADbasic 5.00, Manual March 2010

ADwin

A-25

H
halt, see stop process
hardware access

read · 218
write · 219

Header · 47
help

call selected · 15
F1 · 15

hexadecimal notation · 79

I
IEEE floating-point format · 78
If · 179

see also #If · 181
Import · 183
Inc · 185
Include · 186

directory settings · 47
Include a file: #Include · 186
Include a library: Import · 183

include
include-file, general · 97

increment · 185
indent

ADbasic sections · 45
lines · 18

info range · 62
info window · 62
Init: · 188
initialization, boot · 11
initialize · 74
input license key · 9
insert code snippets · 31
installation, standard directory · 11

instruction
autocomplete · 30
declaration info · 32
display passed parameters · 32
jump to declaration · 29
measure processing time · 99
separator (:) · 133

instruction reference · 123
Integer · 78
integer numbers

binary notation · 79
hexadecimal notation · 79
type conversion · 94
value range · 78

internal counter
clock cycle · 115

internal memory
additional (EM) · 85
data (DM) · 85
SRAM · 84

interrupt, see stop process
IO_Sleep · 189

J
Java · 122
jump to declaration · 29
jump to program line · 29
jump, conditional

If … Then · 179
SelectCase · 229

K
keyboard, settings display · 61

L
language · 47
latency (timing window) · 49, 65
length (timing window) · 49, 65
less than <, <= · 135
Lib_EndFunction · 191

Index

ADbasic 5.00, Manual March 2010

ADwin

A-26

Lib_EndSub · 195
Lib_Function · 191
Lib_Sub · 195
library

create
from ADbasic · 40
from command line · 8

directory settings · 47
function · 191
general · 97
Import · 183
position in the program · 75
subroutine · 195
toggle folding · 19

library file
create · 39

license agreement · 4
license key · 9
line feed (escape sequence) · 91
line length, max.

standard · 72
with #Include · 186

lines
change to comment · 19
indenting · 18
jump to · 29
numbering · 45
smart format · 18

LN · 199
LngToStr · 200
Log · 202
logarithm

decimal · 202
natural · 199

logic functions
And · 138
Not · 211
Or · 212
Shift_Left · 231
Shift_Right · 232
XOr · 261

long, see integer numbers
LowInit: · 203
low-priority processes with

T11 · 117

M
macro

function · 176
general features · 96
position in the program · 75
toggle folding · 19

Make Bin File, Make Lib File · 39
manual indenting · 18
Mark Control block · 28
Matlab · 122
matrix, 2-dimensional · 85
Max_Float · 204
Max_Long · 206
Maximum

Float values · 204
integer values · 206

maximum line length
standard · 72
with #Include · 186

measure processing time · 99
measurement graph · 70
MemCpy · 208
memory

see also data memory
additional demand by

debug mode · 106
timing mode · 109

allocate · 83
areas (PM, DM, EM, DX) · 84
calculate need of · 62
fragmentation · 113
string · 89
workload · 61

Index

ADbasic 5.00, Manual March 2010

ADwin

A-27

menu
bar · 36
build · 39
debug · 48
edit · 38
file · 37
help · 55
options · 40
select · 13
tools · 54
view · 38
window · 55

Min_Float · 205
Min_Long · 207
Minimum

integer values · 207
minimum

float values · 205
multiplication

by 2 · 231
simple · 128

N
names, local variables · 83
natural logarithm · 199
negative sign · 93
news in ADbasic 5 · 5
Next (For …) · 174
NOP · 210
Not · 211
not equal to <> · 135
notation of numbers · 79
notes, see remarks
number of processes, check · 107
number, see device no.
numerical values, notation · 79

O
operating system

directory settings · 47
load, see booting

operators
And · 138
evaluate · 92
negative sign · 93
Or · 212
priority · 92
XOr · 261

optimal timing
one process · 108
several processes · 107

optimize
calculate polynoms quickly · 130
constants instead of

variables · 100
general · 99
measure faster · 101
measure processing time · 99
register access · 100
run-time error · 106
setting waiting time · 101
T11 memory access · 105
timing · 106
use waiting times · 103

options setting
ADtools · 48
compiler · 40
directory · 47
editor · 45
general · 45
language · 47
print · 47
process · 42
syntax highlight · 46

Or · 212
Or operation · 212
outdent lines · 18

Index

ADbasic 5.00, Manual March 2010

ADwin

A-28

P
P1_Sleep · 214
P2_Sleep · 216
Par_n · 79
parameter scan · 34
parameter window · 58
parameters, see variables, global
parse and indent · 45
passed parameters, display · 32
Peek · 218
PM, see memory
PM_Local

Event · 160
Finish · 169
Init · 188
LowInit · 203

Poke · 219
polynoms, calculate quickly · 130
power · 130

base e · 162
replace in polynom · 130

pre-processor
overview instructions · 132

pre-processor instructions
#Define · 153
#If … Then · 181
#Include · 186

Print layout · 47
print settings · 47
priority

low-priority processes with
T11 · 117

of processes, check · 107
operators · 92
process, see process, priority

problems
slow editor · 45

Process
read out error · 223

process
autostart · 39
check number and priority · 107
communication · 120
communication process · 113
load anew · 113
memory use · 113
number · 111
operating modes for timing · 119
optimal timing, one process · 108
optimal timing, several

processes · 107
options, show · 13
priority

communication · 113
high · 112
low · 112
low with T11 · 117
overview · 111

processing time · 116
query status · 224
setting options · 42
several · 116
standard processes 11, 12 · 112
start

delayed · 238
other process · 237

stop, see stop process
time characteristic · 115

process control
End · 159
Exit · 161
Process_Error · 223
ProcessN_Running · 224
Reset_Event · 227
Restart_Process · 228
Start_Process · 237
Start_Process_Delayed · 238
Stop_Process · 240

Index

ADbasic 5.00, Manual March 2010

ADwin

A-29

process cycle
call

by event · 110
time interval · 115

precise timing · 116
process optimization, see optimize
Process_Error · 223
Processdelay · 115

system variable · 220
time resolutions · 115

Processn_Running · 224
Processor · 181
program architecture

jump
If … Then · 179
SelectCase · 229

library
function · 191
Lib_Sub · 195

loop
Do … Until · 158
For … Next · 174

modules
function · 176
subroutine Sub · 251

remarks Rem · 226
program design · 72
program improvement, see optimize
program line, jump to · 29
program memory · 85

additional demand by
debug mode · 106
timing mode · 109

program section
Event: · 74
Finish: · 74
Init: · 74
LowInit: · 74
overview · 74

program structure
overview · 96
include-file · 97
library · 97
module (macro) · 96
toggle folding · 19

project
general · 35
highlight used parameters · 34
window · 57

Prozessn_Running · 224

R
Read_Timer · 225
register access · 100
regular expressions · 26
Rem · 226
remainder of integer division · 282
remarks · 226
replace

examples · 25
regular expressions · 26
text · 21

Reset_Event · 227
Restart_Process · 228
ring buffer · 87
root · 236

run-time error
see also debug mode
display · 52
find · 106

S
save

for ADbasic 4 · 7
Save All Files of Project · 57
SDRAM, see memory

Index

ADbasic 5.00, Manual March 2010

ADwin

A-30

search · 21
declaration of

instruction/variable · 29
examples · 24
regular expressions · 26

SelectCase · 229
separator : · 133
settings

print · 47
Shift_Left · 231
Shift_Right · 232
(bit) shifting

left · 231
right · 232

Short · 78
Short-cuts · 1
show

declarations · 32
line numbers · 45
process options window · 13

show declarations · 69
sine: Sin · 233
Sleep · 234
Sleep see also P1_Sleep

see also
smart format · 18
snippets · 31
source code

creating · 15
formatting · 17
information · 13
status bar · 61
structured display · 18
to do’s · 63
use in a project · 57

source code status bar · 13
special char, find · 26
Sqrt · 236
Sqrt from negative value, see run-

time error
square root · 236
SRAM, see memory
stack size · 62
Start_Process · 237
Start_Process_Delayed · 238
starting ADbasic · 9
status bar · 61
status bar of source code

window · 13
status message, compiler · 62
Step (For …) · 174
stop process

itself
in Event: · 159
in LowInit:, Init:, Finish: · 161

others · 240
Stop_Process · 240
StrComp · 243
String

assign values normally · 89
assignment not being

recommended · 91
control character · 90
definition of data type · 78
escape sequence · 90

string
variable structure · 89

Index

ADbasic 5.00, Manual March 2010

ADwin

A-31

String instruction
addition · 126
ASCII value into char · 146
char into ASCII value · 143
comparison · 243
dimensioning · 241
Float to string · 170
Float to string (40 bit) · 172
length of a string · 246
Long to string · 200
partial string

left · 244
midst · 247
right · 249

String to Float · 257
String to long · 259
syntax · 241

StrLeft · 244
StrLen · 246
StrMid · 247
StrRight · 249
structure

Coloured display of source
code · 18

indent lines · 18
program sections · 96
toggle folding · 19

Sub · 251
subroutine

general features · 96
library

definition (Lib_Sub) · 195
general · 97

macro · 251
position in the program · 75

subtraction · 127
switch to ADbasic 5 · 5
symbolic names · 74
syntax

highlighting · 18, 46

system variable
Globaldelay see

Processdelay · 220
overview · 82
Process_Error · 223
Processdelay · 220
ProcessN_Running · 224

T
T11

low-priority processes · 117
setting waiting time · 102

tab
escape sequence · 91
size · 45

tangent: Tan · 254
TCP/IP

see Ethernet
terminate, see stop process
Testpoint · 122
text

find And replace · 21
find quickly · 21
fold ranges · 19
indenting · 18
smart format · 18

Then (If … Then) · 179
TiCo bootloader, programming · 34
time

cycle time · 115
precise cycle timing · 116
time-Out · 113

time saving
constants instead of

variables · 100
measure faster · 101
register access · 100
setting waiting time · 101
use waiting times · 103

timer event · 110
timer, see counter

Index

ADbasic 5.00, Manual March 2010

ADwin

A-32

timing
see optimize
changed by

debug mode · 106
timing mode · 109

operating modes
externally controlled

process · 120
general · 119
several time-controlled

processes · 119
single time-controlled

process · 119
optimal, several processes · 107
optimal, with one process · 108
optimize · 106
query information · 108

timing mode
additional processor time · 109
enable · 48
use · 106
window · 48, 64

To (For …) · 174
to do list · 63
toggle folding · 19
tool bar · 13
toolbox · 57
tools

TBin · 70
TButton · 70
TDigit · 70
TFifo · 70
TGraph · 70
TLed · 70
TMeter · 70
TPar_FPar · 70
TPoti · 70
TProcess · 70

trace mode
Trace_Mode_Pause · 255
Trace_Mode_Resume · 256

transputer settings · 13
trigonometric functions

ArcCos · 140
ArcSin · 141
ArcTan · 142
Cos · 147
Sin · 233
Tan · 254

type conversion
ASCII value into char · 146
automatical · 94
Float to Long (data type

only) · 144
Float to Long (only data

type) · 145
Float to string · 170
Float to string (40 bit) · 172
Long to string · 200
String to Float · 257
String to long · 259

U
Uncomment Block · 19
Unmark Control block · 28
Until (Do …) · 158
upper / lower case letters · 15
USB · 121
user defined instructions and

variables · 74
user surface · 12
utility programs, see ADtools

V
ValF · 257
ValI · 259
value range · 77

Index

ADbasic 5.00, Manual March 2010

ADwin

A-33

variables
autocomplete · 30
declaration info · 32
display · 58
global · 79

copy a great number of · 208
highlight used · 34
name · 76

initialization by booting · 11
initialize · 75
jump to declaration · 29
local · 82

allocate memory area · 83
name length · 83

overview · 76
switch hex/decimal display · 59
symbolic names · 74
see also system variable

view
to do list · 63

Visual Basic · 122

W
wait

IO_Sleep · 189
NOP · 210
P1_Sleep: Pro I-Bus · 214
P2_Sleep: Pro II-Bus · 216
Processor T11: CPU_Sleep · 148
setting waiting time exactly · 101
Sleep: processors until T10 · 234

window
compiler options · 40
debug errors · 52
declarations · 69
global variables · 67
info range · 62
info window · 62
overview · 12
parameter · 58
process Options · 42
project · 57
source code information · 13
source code status bar · 13
status bar · 61
timing analyzer · 64
to do list · 63
toolbox · 57

work load
100%, memory

fragmentation · 113
workload

definition · 118
display · 61
influence of number of

processes · 107
workspace size · 62

X
XOr · 261

Index

ADbasic 5.00, Manual March 2010

ADwin

A-34

ADbasic 5.00, Manual March 2010

A.8 Instructions in this manual
Symbols
< = > (comparison) 135
+ (addition) 125
+ (String addition) 126
- (subtraction) 127
* (multiplication) 128
/ (division) 129
^ (power) 130
= (assignment) 134
: colon 133
" " (String) 241
#Define 153
#If … Then … {#Else …}
#EndIf 181

#Include 186
#…, preprocessor state-
ment 132

A-B
AbsF 136
AbsI 137
And 138
ArcCos 140
ArcSin 141
ArcTan 142
Asc 143

C
Cast_FloatToLong 144
Cast_LongToFloat 145
Chr 146
Cos 147
CPU_Sleep 148

D
DATA_n 150
Dec 152
Dim 155
Do … Until 158

E-F
End 159
Event: 160
Exit 161
Exp 162
FFT 264

FFT_Calc 274
FFT_Calc_DM 276
FFT_Calc_DX 278
FFT_Init 273
FFT_Mag 268
FFT_Mag_Scale 272
FFT_Phase 270
FFT_Scale 266
FIFO 163
FIFO_Clear 165
FIFO_Empty 167
FIFO_Full 168
Finish: 169
Flo40ToStr 172
FloToStr 170
For … To … {Step …}
Next 174

Function … EndFunction
176

G-J
If … Then … {Else …} En-
dIf 179

Import 183
Inc 185
Init: 188
IO_Sleep 189

K-L
Lib_Function … Lib_End-
Function 191

Lib_Sub … Lib_EndSub
195

LN 199
LngToStr 200
Log 202
LowInit: 203

M-O
Max_Float 204
Max_Long 206
Min_Float 205
Min_Long 207
Mod 282
NOP 210

Not 211
Or 212

P
P1_Sleep 214
P2_Sleep 216
Peek 218
Poke 219
Processdelay 220
Processn_Running 224
Process_Error 223

R
Read_Timer 225
Rem 226
Reset_Event 227
Restart_Process 228

S
SelectCase 229
Shift_Left 231
Shift_Right 232
Sin 233
Sleep 234
Sqrt 236
Start_Process 237
Stop_Process 240
" " (String) 241
StrComp 243
StrLeft 244
StrLen 246
StrMid 247
StrRight 249
Sub … EndSub 251

T-Z
Tan 254
Trace_Mode_Pause 255
Trace_Mode_Resume256
ValF 257
ValI 259
XOr 261

ADbasic 5.00, Manual March 2010

Instruction Index

	ADbasic
	Table of contents
	Conventions
	1 Introduction
	2 News in ADbasic 5
	3 Development Environment
	3.1 Basic Steps
	3.1.1 Starting the Development Environment
	3.1.2 Check or change ADbasic licenses
	3.1.3 Loading the ADwin Operating System
	3.1.4 Basic Elements of the Development Environment

	3.2 Creating source code
	3.2.1 Calling online help
	3.2.2 Context menu in source code window
	3.2.3 Editor bar

	3.3 Formatting source code
	3.3.1 Syntax highlighting
	3.3.2 Smart formatting
	3.3.3 Indenting text lines
	3.3.4 Changing lines into comment
	3.3.5 Folding text ranges

	3.4 Searching and replacing
	3.4.1 Finding text quickly
	3.4.2 Finding and replacing text
	Examples - Finding Text
	Examples - Replacing Text

	3.4.3 Regular expression
	3.4.4 Marking control blocks
	3.4.5 Using bookmarks
	3.4.6 Jump to a program line
	3.4.7 Jumping to declaration of instruction or variable

	3.5 Writing programs with ease
	3.5.1 Autocomplete for instruction or variable
	3.5.2 Inserting code snippets
	3.5.3 Displaying instruction parameters
	3.5.4 Displaying declaration of instruction or variable
	3.5.5 Displaying declarations of a file
	3.5.6 Displaying used global variables and arrays

	3.6 Managing Projects
	3.7 Menus
	3.7.1 File Menu
	3.7.2 Edit Menu
	3.7.3 View Menu
	3.7.4 Build Menu
	3.7.5 Options Menu
	Compiler Options dialog box
	Process Options dialog box
	Settings dialog box

	3.7.6 Debug Menu
	Timing Analyzer Option
	Show timing information Menu Item
	Debug mode Option

	3.7.7 Tools Menu
	3.7.8 Window Menu
	3.7.9 Help Menu

	3.8 Windows
	3.8.1 Toolbox
	3.8.2 Project Window
	3.8.3 Parameter Window
	3.8.4 Process Window
	3.8.5 Status Bar

	3.9 Info range
	3.9.1 Info window
	3.9.2 ToDo List
	3.9.3 Timing Analyzer Window
	3.9.4 Global Variables Window
	3.9.5 Declarations Window

	3.10 ADtools

	4 Programming Processes
	4.1 Program Design
	4.1.1 The Program Sections
	4.1.2 User defined instructions and variables

	4.2 Variables and Arrays
	4.2.1 Overview
	4.2.2 Data Structures
	4.2.3 Data Types
	4.2.4 Entering Numerical Values
	4.2.5 Global Variables (Parameters)
	4.2.6 Global Arrays
	4.2.7 System Variables
	4.2.8 Local Variables and Arrays

	4.3 Variables and Arrays - Details
	4.3.1 Variables and Arrays in the Data Memory
	4.3.2 Memory Areas
	4.3.3 2-dimensional Arrays
	4.3.4 The Data Structure FIFO
	4.3.5 Strings
	Normal Assignment
	Character Assignment via Escape Sequence
	String Assignments that are NOT Recommended

	4.4 Expressions
	4.4.1 Evaluation of Operators
	4.4.2 Type Conversion

	4.5 Selection structures, Loops and Modules
	4.5.1 Subroutine and Function Macros
	4.5.2 Include-Files
	4.5.3 Libraries

	5 Optimizing Processes
	5.1 Measuring the Processing Time
	5.2 Useful Information
	5.2.1 Accessing Hardware Addresses
	5.2.2 Constants instead of Variables
	5.2.3 Faster Measurement Function
	5.2.4 Setting Waiting Times Exactly
	5.2.5 Using Waiting Times
	5.2.6 Optimization with Processor T11

	5.3 Debugging and Analysis
	5.3.1 Finding Run-time Errors (Debug Mode)
	5.3.2 Check the Timing Characteristics (Timing Mode)
	Checking Number and Priority of Processes
	Optimal Timing Characteristics of Processes

	6 Processes in the ADwin System
	6.1 Process Management
	6.1.1 Types of Processes
	6.1.2 Processes with High-Priority
	6.1.3 Processes with Low-Priority
	6.1.4 Communication Process
	6.1.5 Memory fragmentation

	6.2 Time Characteristics of Processes
	6.2.1 Processdelay
	6.2.2 Precise Timing of Process Cycles
	6.2.3 Low-Priority Processes with T11
	6.2.4 Workload of the ADwin system
	6.2.5 Different Operating Modes in the Operating System

	6.3 Communication
	6.3.1 Data Exchange between Processes
	6.3.2 Communication between PC and ADwin System
	6.3.3 The Device Number
	6.3.4 Communication with Development Environments

	7 Instruction Reference
	7.1 Instruction Syntax
	7.2 Instructions for L16, Gold, Pro
	7.3 FFT Library
	FFT
	FFT_Scale
	FFT_Mag
	FFT_Phase
	FFT_Mag_Scale
	FFT_Init
	FFT_Calc
	FFT_Calc_DM
	FFT_Calc_DX

	7.4 Mathematics Instructions
	Mod

	8 How to Solve Problems?
	Appendix
	A.1 Short-Cuts in ADbasic
	A.2 ASCII-Character Set
	A.3 License Agreement
	A.4 Command Line Calling
	A.4.1 Syntax
	A.4.2 Notes
	A.4.3 Examples
	A.4.4 Command line calls in Windows

	A.5 Obsolete Program Parts
	A.6 List of Debug Error messages
	A.7 Index
	Instructions in this manual

